Rhenium(I) tricarbonyl compounds of bioactive thiosemicarbazones: Synthesis, characterization and activity against Trypanosoma cruzi.

[1]  Leonardo L. G. Ferreira,et al.  Advances and Progress in Chagas Disease Drug Discovery. , 2016, Current topics in medicinal chemistry.

[2]  B. Shankar,et al.  Dimeric and monomeric fac-rhenium(I)tricarbonyl complexes containing 2-(imidazo[1,2-a]pyridin-2-yl)phenolate , 2015 .

[3]  M. Comini,et al.  Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites. , 2015, Journal of inorganic biochemistry.

[4]  F. Cabrerizo,et al.  Norharmane rhenium(I) polypyridyl complexes: synthesis, structural and spectroscopic characterization. , 2015, Dalton transactions.

[5]  C. Barnes,et al.  Synthesis and stability of 2+1 complexes of N,N-diethylbenzoylthiourea with [MI(CO)3]+ (M = Re, 99mTc) , 2015 .

[6]  R. Rosli,et al.  Synthesis, characterization and biological activity of Cu(II), Zn(II) and Re(I) complexes derived from S-benzyldithiocarbazate and 3-acetylcoumarin , 2015, BioMetals.

[7]  S. Etcheverry,et al.  Vanadium compounds in medicine , 2014, Coordination Chemistry Reviews.

[8]  B. Garat,et al.  Effect of the metal ion on the anti T. cruzi activity and mechanism of action of 5-nitrofuryl-containing thiosemicarbazone metal complexes , 2014 .

[9]  B. Garat,et al.  New fac-tricarbonyl rhenium(I) semicarbazone complexes: synthesis, characterization, and biological evaluation , 2014 .

[10]  V. Moreno,et al.  Water-Soluble Ruthenium Complexes Bearing Activity Against Protozoan Parasites , 2014, Biological Trace Element Research.

[11]  D. Horn,et al.  Antiparasitic chemotherapy: from genomes to mechanisms. , 2014, Annual review of pharmacology and toxicology.

[12]  V. Moreno,et al.  Potential Mechanism of the Anti-trypanosomal Activity of Organoruthenium Complexes with Bioactive Thiosemicarbazones , 2013, Biological Trace Element Research.

[13]  V. Moreno,et al.  Oxidovanadium(IV) and dioxidovanadium(V) complexes of tridentate salicylaldehyde semicarbazones: searching for prospective antitrypanosomal agents. , 2013, Journal of inorganic biochemistry.

[14]  D. Gambino,et al.  Perspectives on what ruthenium-based compounds could offer in the development of potential antiparasitic drugs , 2012 .

[15]  E. Hosten,et al.  Monomeric/dimeric complexes of fac-[Re(CO)3]+ with benzoylthiourea derivatives , 2012 .

[16]  V. Moreno,et al.  New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. , 2012, Dalton transactions.

[17]  V. Moreno,et al.  DNA as molecular target of analogous palladium and platinum anti-Trypanosoma cruzi compounds: a comparative study. , 2011, Journal of inorganic biochemistry.

[18]  A. H. Klahn,et al.  Synthesis, characterization and anti-Trypanosoma cruzi evaluation of ferrocenyl and cyrhetrenyl imines derived from 5-nitrofurane , 2011 .

[19]  D. Gambino Potentiality of vanadium compounds as anti-parasitic agents , 2011 .

[20]  A. Merlino,et al.  In search of patterns over physicochemical properties and pharmacological activities for a set of [MCl₂(thiosemicarbazone)] complexes (M=Pt/Pd): support for multiple mechanisms of antichagasic action excluding DNA-bonding in vivo? , 2011, European journal of medicinal chemistry.

[21]  V. Moreno,et al.  Vanadium polypyridyl compounds as potential antiparasitic and antitumoral agents: new achievements. , 2011, Journal of inorganic biochemistry.

[22]  G. Gasser,et al.  Organometallic Anticancer Compounds , 2010, Journal of medicinal chemistry.

[23]  L. Messori,et al.  Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. , 2010, Drug discovery today.

[24]  D. Gambino,et al.  Effect of ruthenium complexation on trypanocidal activity of 5-nitrofuryl containing thiosemicarbazones. , 2009, European journal of medicinal chemistry.

[25]  Isabela Ribeiro,et al.  New, Improved Treatments for Chagas Disease: From the R&D Pipeline to the Patients , 2009, PLoS neglected tropical diseases.

[26]  A. Shtemenko,et al.  Synthesis, characterization, in vivo antitumor properties of the cluster rhenium compound with GABA ligands and its synergism with cisplatin. , 2009, Dalton transactions.

[27]  M. Navarro Gold complexes as potential anti-parasitic agents , 2009 .

[28]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[29]  M. Vieites,et al.  Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity. , 2009, Journal of inorganic biochemistry.

[30]  J. McKerrow,et al.  Metal compounds for the treatment of parasitic diseases. , 2008, Journal of inorganic biochemistry.

[31]  M. Vieites,et al.  ESR, electrochemical and reactivity studies of antitrypanosomal palladium thiosemicarbazone complexes. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[32]  B. Garat,et al.  Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents. , 2008, Journal of inorganic biochemistry.

[33]  Edward H. Kerns,et al.  Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization , 2008 .

[34]  D. Gambino,et al.  Insight into the bioreductive mode of action of antitrypanosomal 5-nitrofuryl containing thiosemicarbazones. , 2008, Medicinal chemistry (Shariqah (United Arab Emirates)).

[35]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[36]  O. Ishitani,et al.  Photochemical synthesis of mer-[Re(bpy)(CO)3Cl]. , 2007, Inorganic chemistry.

[37]  D. Gambino,et al.  Vibrational spectra of palladium 5-nitrofuryl thiosemicarbazone complexes: experimental and theoretical study. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  Mark D. Smith,et al.  Ligand-promoted solvent-dependent ionization and conformational equilibria of Re(CO)3Br[CH2(S-tim)2] (tim = 1-methylthioimidazolyl). Crystal structures of Re(CO)3Br[CH2(S-tim)2] and {Re(CO)3(CH3CN)[CH2(S-tim)2]}(PF6). , 2006, Inorganic chemistry.

[39]  R. Krauth-Siegel,et al.  Novel antitrypanosomal agents based on palladium nitrofurylthiosemicarbazone complexes: DNA and redox metabolism as potential therapeutic targets. , 2006, Journal of medicinal chemistry.

[40]  F. Mendizábal,et al.  Electrochemical and ESR study of 5-nitrofuryl-containing thiosemicarbazones antiprotozoal drugs. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[41]  M. Robb,et al.  Mechanism of an Exceptional Class of photostabilizers: a seam of conical intersection parallel to excited state intramolecular proton transfer (ESIPT) in o-hydroxyphenyl-(1,3,5)-triazine. , 2005, The journal of physical chemistry. A.

[42]  K. J. Brown,et al.  Syntheses and structural characterizations of rhenium carbonyl complexes of a bitopic ferrocene-linked bis(pyrazolyl)methane ligand , 2005 .

[43]  J. Maya,et al.  Buthionine Sulfoximine Increases the Toxicity of Nifurtimox and Benznidazole to Trypanosoma cruzi , 2005, Antimicrobial Agents and Chemotherapy.

[44]  A. Denicola,et al.  In vitro activity and mechanism of action against the protozoan parasite Trypanosoma cruzi of 5-nitrofuryl containing thiosemicarbazones. , 2004, Bioorganic & medicinal chemistry.

[45]  J. Zubieta,et al.  A convenient synthesis, chemical characterization and reactivity of [Re(CO)3(H2O)3]Br: the crystal and molecular structure of [Re(CO)3(CH3CN)2Br] , 2004 .

[46]  E. Vázquez-López,et al.  Reaction of bromopentacarbonylrhenium(I) with ferrocenylcarbaldehyde thiosemicarbazones: the first X-ray diffraction studies of metal carbonyl complexes containing bidentate thiosemicarbazone ligands , 2002 .

[47]  N. Metzler‐Nolte,et al.  Labeling of Biomolecules for Medicinal Applications — Bioorganometallic Chemistry at Its Best , 2001 .

[48]  Nils Metzler-Nolte Prof. Labeling of Biomolecules for Medicinal Applications—Bioorganometallic Chemistry at Its Best , 2001 .

[49]  A. Gómez-Barrio,et al.  Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes , 2000, Parasitology Research.

[50]  Roger Schibli,et al.  Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M=Re, Tc) directed towards radiopharmaceutical application , 1999 .

[51]  G. Peluffo,et al.  1,2,5-Oxadiazole N-oxide derivatives and related compounds as potential antitrypanosomal drugs: structure-activity relationships. , 1999, Journal of medicinal chemistry.

[52]  R. Schibli,et al.  Ligand exchange reactions starting from [Re(CO)3Br3]2−. Synthesis, characterization and structures of rhenium(I) tricarbonyl complexes with thiourea and thiourea derivatives , 1996 .

[53]  M. W. George,et al.  Structural Investigation of the Ground and Excited States of ClRe(CO)3(4,4'-bipyridyl)2 using Vibrational Spectroscopy , 1994 .

[54]  V. Gramlich,et al.  Synthesis and reactivity of [NEt4]2[ReBr3(CO)3]. Formation and structural characterization of the clusters [NEt4][Re3(µ3-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by alkaline titration , 1994 .

[55]  J. Fiedler,et al.  Di- and trinuclear complexes with sulfide-bridged rhenium in very different oxidation states (ReIReVII, ReIReVIReI, ReIReVIIReI). The d0/d1 transition in tetrathiometalates , 1993 .

[56]  Albert J. Leo,et al.  [25] Hydrophobic parameter: Measurement and calculation , 1991 .

[57]  M. Bruce,et al.  Cyclopentadienyl-ruthenium and -osmium chemistry. IV. Convenient high-yield synthesis of some cyclopentadienyl ruthenium or osmium tertiary phosphine halide complexes , 1977 .