A Survey of Space Complexity

Abstract The main properties of deterministic and nondeterministic space complexity classes are given, with emphasis on closure under complementation. Various limitations and generalizations of these classes are studied: weakly space-bounded classes, classes defined by one-way alternating, or probabilistic machines, and nonuniform classes. In each case intrinsic properties of these classes and relationship between these classes are given. Then three ways of relativizing complexity classes are examined. Finally, the space complexity of RAMs is defined and its relation to usual classes is given.

[1]  Joel I. Seiferas,et al.  Relating Refined Space Complexity Classes , 1977, J. Comput. Syst. Sci..

[2]  Joel I. Seiferas,et al.  Limitations on Separating Nondeterministic Complexity Classes , 1981, SIAM J. Comput..

[3]  Christoph Meinel,et al.  p-Projection Reducibility and the Complexity Classes L(nonuniform) and NL(nonuniform) , 1996, MFCS.

[4]  Kurt Mehlhorn,et al.  Lower Bounds for the Space Complexity of Context-Free Recognition , 1976, International Colloquium on Automata, Languages and Programming.

[5]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[6]  Marek Karpinski,et al.  On the Power of Two-Way Random Generators and the Impossibility of Deterministic Poly-Space Simulation , 1986, Inf. Control..

[7]  Janos Simon,et al.  On Tape-Bounded Probabilistic Turing Machine Acceptors , 1981, Theor. Comput. Sci..

[8]  Martin Tompa An Extension of Savitch's Theorem to Small Space Bounds , 1981, Inf. Process. Lett..

[9]  Ravi Kannan,et al.  Alternation and the power of nondeterminism , 1983, STOC.

[10]  Andrzej Szepietowski Some Notes on Strong and Weak log log n Space Complexity , 1989, Inf. Process. Lett..

[11]  Andrzej Szepietowski There are no Fully Space Constructible Functions Between log log n and log n , 1987, Inf. Process. Lett..

[12]  José L. Balcázar,et al.  On Non- uniform Polynomial Space , 1986, Computational Complexity Conference.

[13]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[14]  Maris Alberts Space complexity of alternating Turing machines , 1985, FCT.

[15]  Janos Simon,et al.  Space-Bounded Hierarchies and Probabilistic Computations , 1984, J. Comput. Syst. Sci..

[16]  Andrzej Szepietowski,et al.  Remarks on Languages Acceptable in log n Space , 1988, Inf. Process. Lett..

[17]  Richard J. Lipton,et al.  Alternating Pushdown and Stack Automata , 1984, SIAM J. Comput..

[18]  H. Jung Relationships between Probabilistic and Deterministic Tape Complexity , 1981, MFCS.

[19]  Juris Hartmanis,et al.  A note on tape bounds for sla language processing , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[20]  Peter van Emde Boas Space Measures for Storage Modification Machines , 1989, Inf. Process. Lett..

[21]  Andrzej Szepietowski If Deterministic and Nondeterministic Space Complexities are Equal for log log n then they are also Equal for log n , 1989, STACS.

[22]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[23]  José L. Balcázar,et al.  Structural Complexity II , 2012, EATCS.

[24]  Ivan Hal Sudborough,et al.  Efficient algorithms for path system problems and applications to alternating and time-space complexity classes , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[25]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[26]  Ronald V. Book,et al.  Relativizing Time, Space, and Time-Space , 1982, SIAM J. Comput..

[27]  L. Csanky,et al.  Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..

[28]  Jeffrey D. Ullman,et al.  Some Results on Tape-Bounded Turing Machines , 1969, JACM.

[29]  Janos Simon,et al.  On the Difference Between One and Many (Preliminary Version) , 1977, ICALP.

[30]  Marek Karpinski,et al.  Randomness, Provability, and the Seperation of Monte Carlo Time and Space , 1987, Computation Theory and Logic.

[31]  Christopher B. Wilson A Measure of Relativized Space Which Is Faithful With Respect to Depth , 1988, J. Comput. Syst. Sci..

[32]  B. E. Li Tow On efficient deterministic simulation of turing machine computations below logspace , 1985 .

[33]  Jirí Wiedermann Normalizing and Accelerating RAM Computations and the Problem of Reasonable Space Measures , 1990, ICALP.

[34]  Ivan Hal Sudborough,et al.  On Eliminating Nondeterminism from Turing Machines which Use less than Logarithm Worktape Space , 1982, Theor. Comput. Sci..

[35]  John Gill,et al.  Deterministic Simulation of Tape-Bounded Probabilistic Turing Machine Transducers , 1980, Theor. Comput. Sci..

[36]  S.-Y. Kuroda,et al.  Classes of Languages and Linear-Bounded Automata , 1964, Inf. Control..

[37]  Hermann Jung On Probabilistic Time and Space , 1985, ICALP.

[38]  Viliam Geffert,et al.  Nondeterministic Computations in Sublogarithmic Space and Space Constructibility , 1990, SIAM J. Comput..

[39]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[40]  Allan Borodin,et al.  Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines , 1984, Inf. Control..

[41]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[42]  Oscar H. Ibarra A Hierarchy Theorem for Polynomial-Space Recognition , 1974, SIAM J. Comput..

[43]  Hajime Machida,et al.  Space Complexity in On-Line Computation , 1982, J. Comput. Syst. Sci..

[44]  Juris Hartmanis,et al.  Languages Simultaneously Complete for One-Way and Two-Way Log-Tape Automata , 1981, SIAM J. Comput..

[45]  Rusins Freivalds,et al.  Space and Reversal Complexity of Probabilistic One-Way Turing Machines , 1983, FCT.

[46]  Peter van Emde Boas,et al.  The Problem of Space Invariance for Sequential Machines , 1988, Inf. Comput..

[47]  Desh Ranjan,et al.  Space Bounded Computations: Review and New Separation Results , 1991, Theor. Comput. Sci..

[48]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[49]  Jonathan F. Buss A theory of oracle machines , 1987, Computational Complexity Conference.

[50]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[51]  Richard J. Lipton,et al.  Pseudorandom Number Generation and Space Complexity , 1983, FCT.

[52]  Andrzej Szepietowski If Deterministic and Nondeterministic Space Complexities are Equal for log log n, then they are also Equal for log n , 1990, Theor. Comput. Sci..

[53]  Peter van Emde Boas,et al.  On tape versus core an application of space efficient perfect hash functions to the invariance of space , 1984, STOC '84.

[54]  Klaus-Jörn Lange,et al.  Separation with the Ruzzo, Simon, and Tompa Relativization Implies DSPACE(log n) != NSPACE(log n) , 1987, Inf. Process. Lett..

[55]  Andrzej Szepietowski Some Remarks on the Alternating Hierarchy and Closure Under Complement for Sublogarithmic Space , 1989, Inf. Process. Lett..

[56]  Oscar H. Ibarra,et al.  Some Observations Concerning Alternating Turing Machines Using Small Space , 1987, Inf. Process. Lett..

[57]  Marek Karpinski,et al.  There Is No Polynomial Deterministic Space Simulation of Probabilistic Space with a Two-Way Random-Tape Generator , 1986, Inf. Control..

[58]  M. Karpinski,et al.  On the Monte Carlo Space Constructible Functions and Separation Results for Probabilistic Complexity Classes (Revised Version) , 1986 .

[59]  José L. Balcázar,et al.  Uniform Characterizations of Non-Uniform Complexity Measures , 1985, Inf. Control..

[60]  Joel I. Seiferas Techniques for Separating Space Complexity Classes , 1977, J. Comput. Syst. Sci..

[61]  Ivan Hal Sudborough,et al.  On Eliminating Nondeterminism From Turing Machines Which Use Less Than Logarithmic Worktape Space , 1979, ICALP.

[62]  Ch Meinel p -projection reducibility and the complexity classes , 1986 .

[63]  Richard E. Ladner,et al.  Space Bounds for Processing Contentless Inputs , 1975, J. Comput. Syst. Sci..

[64]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[65]  Juris Hartmanis,et al.  On Tape Bounds for Single Letter Alphabet Language Processing , 1976, Theor. Comput. Sci..

[66]  David A. Plaisted,et al.  New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[67]  Jonathan F. Buss,et al.  Relativized Alternation and Space-Bounded Computation , 1988, J. Comput. Syst. Sci..

[68]  Juris Hartmanis,et al.  Some Observations about Relativization of Space Bounded Computations , 1988, Current Trends in Theoretical Computer Science.

[69]  Juris Hartmanis New Developments in Structural Complexity Theory , 1990, Theor. Comput. Sci..

[70]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[71]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[72]  José L. Balcázar,et al.  On some "non-uniform" complexity measures , 1985, FCT.

[73]  I. Takanami,et al.  A note on alternating turing machines using small space , 1987 .

[74]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.