Design of dielectric/metal/dielectric transparent electrodes for flexible electronics

Abstract. A flexible transparent electrode (FTE) is one of the most essential parts for the next generation of flexible optoelectronic devices, including solar cells, displays, and solid-state lighting devices. Although a lot of candidate materials for the FTE such as metallic nanowires, carbon nanotube, and graphene have been investigated, each material has fundamental limits as FTE applications, such as low transmittance (70% to 80%), high sheet resistance (>100  ohm/sq) and rough surface morphology. Dielectric/metal/dielectric (DMD) electrode structure is a promising candidate for next-generation flexible transparent electrodes. Compared with other transparent electrodes, DMD electrodes show best performance in terms of optical transparency, sheet resistance, and mechanical flexibility. In addition, it has been also reported that the device performances can be significantly enhanced by the microcavity effects with the DMD electrodes. We review the relevant principles and discusses recent progress in DMD electrodes.

[1]  X. Hao,et al.  High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications , 2006 .

[2]  Zhenan Bao,et al.  Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. , 2009, ACS nano.

[3]  Peter A. Hobson,et al.  Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes , 2002 .

[4]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[5]  Hak Ki Yu,et al.  Enhanced Light Out‐Coupling of Organic Light‐Emitting Diodes: Spontaneously Formed Nanofacet‐Structured MgO as a Refractive Index Modulation Layer , 2010, Advanced materials.

[6]  Patrick R. Brown,et al.  Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. , 2012, Nano letters.

[7]  C. Jin,et al.  ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application , 2001 .

[8]  Sungjun Kim,et al.  Hole Injection Layer of Thermally Evaporated Copper Oxide for Top Emitting Organic Light Emitting Diodes , 2010 .

[9]  S. Y. Kim,et al.  Effect of interfacial layer thickness on the formation of interface dipole in metal/tris(8-hydroxyquinoline) aluminum interface , 2008 .

[10]  Hoi Sing Kwok,et al.  High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode , 2006 .

[11]  Franky So,et al.  Degradation Mechanisms in Small‐Molecule and Polymer Organic Light‐Emitting Diodes , 2010, Advanced materials.

[12]  Zaicheng Sun,et al.  High-color-rendering flexible top-emitting warm-white organic light emitting diode with a transparent multilayer cathode , 2011 .

[13]  Shin-Yuan Lin,et al.  ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode , 2006 .

[14]  Stephen D. Evans,et al.  Four-probe electrical transport measurements on individual metallic nanowires , 2007 .

[15]  W. R. Salaneck,et al.  Characterization of the interface dipole at organic/ metal interfaces. , 2002, Journal of the American Chemical Society.

[16]  P. Yianoulis,et al.  Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications , 1997 .

[17]  Paul Heremans,et al.  Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells , 2012, Advanced materials.

[18]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[19]  Stephen R. Forrest,et al.  Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids , 2008 .

[20]  P. Holloway,et al.  Down‐Conversion White Organic Light‐Emitting Diodes Using Microcavity Structure , 2011 .

[21]  Dong Sung Choi,et al.  Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. , 2012, ACS nano.

[22]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[23]  S. Y. Kim,et al.  Metal-Diffusion-Induced Interface Dipole: Correlating Metal Oxide–Organic Chemical Interaction and Interface Electronic States , 2011 .

[24]  S. Park,et al.  Deposition of indium–tin-oxide films on polymer substrates for application in plastic-based flat panel displays , 2001 .

[25]  Hyunsu Cho,et al.  Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics. , 2010, Optics express.

[26]  Do-Young Kim,et al.  Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor , 2010 .

[27]  Edward H. Sargent,et al.  Aluminum doped zinc oxide for organic photovoltaics , 2009 .

[28]  Hyunsu Cho,et al.  Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes , 2009 .

[29]  Han‐Ki Kim,et al.  Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics , 2009 .

[30]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[31]  Chul Woong Joo,et al.  Transparent organic light emitting diodes using a multilayer oxide as a low resistance transparent cathode , 2008 .

[32]  Do-Young Kim,et al.  MoO3/poly(9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine) double-interlayer effect on polymer solar cells , 2010 .

[34]  M. Hissler,et al.  White Organic Light‐Emitting Diodes Based on Quench‐Resistant Fluorescent Organophosphorus Dopants , 2012 .

[35]  Chang Su Kim,et al.  Transparent organic light-emitting diodes using resonant tunneling double barrier structures , 2007 .

[36]  Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer , 2009 .

[37]  W. Kohn,et al.  Theory of Metal Surfaces: Induced Surface Charge and Image Potential. , 1973 .

[38]  Enhancement of Electroluminescence Properties in OLEDs on Polyethylene Terephthalate with Ruthenium-Oxide-Coated Anode and Mg – Al Alloy Cathode , 2007 .

[39]  C. Daube,et al.  Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers , 1998 .

[40]  Gregor Schwartz,et al.  White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency , 2009 .

[41]  G. D. Scott,et al.  The Structure of Evaporated Metal Films and Their Optical Properties , 1950 .

[42]  Zheng-Hong Lu,et al.  Unlocking the full potential of organic light-emitting diodes on flexible plastic , 2011 .

[43]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[44]  K. Yoon,et al.  Structural and photocurrent–voltage characteristics of tungsten oxide thin films on p ‐GaAs , 1996 .

[45]  Jie Zhang,et al.  ZnS/Ag/ZnS coating as transparent anode for organic light emitting diodes , 2007 .

[46]  Hyunsu Cho,et al.  Highly transparent organic light-emitting diodes with a metallic top electrode: the dual role of a Cs2CO3 layer. , 2011, Optics express.

[47]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[48]  Chen Feng,et al.  Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes , 2010 .

[49]  William L. Barnes,et al.  Surface plasmon–polariton mediated emission of light from top-emitting organic light-emitting diode type structures , 2007 .

[50]  C. Guillén,et al.  ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes , 2008 .

[51]  Sungjun Kim,et al.  In Situ Analysis of Hole Injection Barrier of Molybdenum-Oxide-Coated Anode with Organic Materials Using Synchrotron Radiation Photoemission Spectroscopy , 2009 .

[52]  Tae‐Woo Lee,et al.  Morphological and electrical effect of an ultrathin iridium oxide hole extraction layer on P3HT:PCBM bulk-heterojunction solar cells , 2011 .

[53]  J. Ting,et al.  Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films , 2007 .

[54]  Yang Xu,et al.  Semitransparent inverted polymer solar cells using MoO3/Ag/WO3 as highly transparent anodes , 2011 .

[55]  Sungjun Kim,et al.  BCP/Ag/MoO3 Transparent Cathodes for Organic Photovoltaics , 2011 .

[56]  M. Fox Optical Properties of Solids , 2010 .

[57]  Sungjun Kim,et al.  Phase-controllable copper oxides for an efficient anode interfacial layer in organic light-emitting diodes , 2012 .

[58]  Thomas M. Higgins,et al.  Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. , 2012, ACS nano.

[59]  Dorota Temple,et al.  Highly flexible transparent electrodes for organic light-emitting diode-based displays , 2004 .

[60]  Karl Leo,et al.  Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes , 2009 .

[61]  Xiang Zhou,et al.  Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer , 2001 .

[62]  R. Capelli,et al.  Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. , 2010, Nature materials.

[63]  C. Adachi,et al.  Strategies for light extraction from surface plasmons in organic light-emitting diodes , 2011 .

[64]  K. Müllen,et al.  Graphene as Transparent Electrode Material for Organic Electronics , 2011, Advanced materials.

[65]  J. Simon,et al.  Transparent heat mirrors: influence of the materials on the optical characteristics. , 1981, Applied optics.

[66]  Hak Ki Yu,et al.  MgO nano-pyramids structure for enhancement of light extraction efficiency in vertical light-emitting diodes. , 2010, Optics express.

[67]  Kyoung Soon Choi,et al.  Reduced Graphite Oxide-Indium Tin Oxide Hybrid Materials for use as a Transparent Electrode , 2011 .

[68]  J. Xue,et al.  Transparent oxide/metal/oxide trilayer electrode for use in top-emitting organic light-emitting diodes , 2011 .

[69]  K. Leo,et al.  Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes , 2009 .

[70]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[71]  Qidai Chen,et al.  Solving Efficiency–Stability Tradeoff in Top‐Emitting Organic Light‐Emitting Devices by Employing Periodically Corrugated Metallic Cathode , 2012, Advanced materials.

[72]  C. C. Lee,et al.  Optical monitoring of silver-based transparent heat mirrors. , 1996, Applied optics.

[73]  Xiaojun Zeng,et al.  A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer , 2010, Advanced materials.

[74]  S. Yoo,et al.  Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells , 2012 .

[75]  Karsten Heuser,et al.  Comprehensive efficiency analysis of organic light-emitting devices , 2011 .

[76]  Fei Huang,et al.  Materials and Devices toward Fully Solution Processable Organic Light-Emitting Diodes† , 2011 .

[77]  Kihyon Hong,et al.  Review paper: Recent developments in light extraction technologies of organic light emitting diodes , 2011 .

[78]  Antoine Kahn,et al.  Energetics of metal–organic interfaces: New experiments and assessment of the field , 2009 .

[79]  L. Sygellou,et al.  Reduction of Tungsten Oxide: A Path Towards Dual Functionality Utilization for Efficient Anode and Cathode Interfacial Layers in Organic Light‐Emitting Diodes , 2011 .

[80]  K. Leo Organic light-emitting diodes: Efficient and flexible solution , 2011 .

[81]  L. E. Regalado,et al.  Determination of (n,k) for absorbing thin films using reflectance measurements. , 1988, Applied optics.

[82]  S. Y. Kim,et al.  Enhancement of physical properties of indium tin oxide deposited by super density arc plasma ion plating by O2 plasma treatment , 2008 .

[83]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[84]  Hyunsu Cho,et al.  Optical Properties of WO3/Ag/WO3 Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes , 2011 .

[85]  R. A. Bayles,et al.  Small particle melting of pure metals , 1986 .

[86]  Chao Zhang,et al.  TCO‐Free, Flexible, and Bifacial Dye‐Sensitized Solar Cell Based on Low‐Cost Metal Wires , 2012 .

[87]  Xiaohui Liu The design of ZnS/Ag/ZnS transparent conductive multilayer films , 2003 .

[88]  Chang Su Kim,et al.  Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode , 2008 .

[89]  H. G. Jerrard,et al.  Computer-aided techniques for the design of multilayer filters , 1981 .

[90]  H. P. Urbach,et al.  Optimization of light extraction from OLEDs. , 2007, Optics express.

[91]  Zhonghua Qiao,et al.  Thickness dependence of In 2O 3:Sn film growth , 2004 .

[92]  H. Köstlin,et al.  Optimization of transparent heat mirrors based on a thin silver film between antireflection films , 1982 .

[93]  L. Young Prediction of Absorption Loss in Multilayer Interference Filters , 1962 .

[94]  T. Wisleder,et al.  Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements , 2000 .

[95]  Cheap p- and n-doping for highly efficient organic devices , 2011 .

[96]  Seunghyup Yoo,et al.  Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes , 2009 .

[97]  Chongwu Zhou,et al.  The race to replace tin-doped indium oxide: which material will win? , 2010, ACS nano.