Scale Filtered Euclidean Medial Axis

We propose an Euclidean medial axis filtering method which generates subsets of Euclidean medial axis were filtering rate is controlled by one parameter. The method is inspired by Miklos', Giesen's and Pauly's scale axis method which preserves important features of an input object from shape understanding point of view even if they are at different scales. Our method overcomes the most important drawback of scale axis: scale axis is not, in general, a subset of Euclidean medial axis. It is even not necessarily a subset of the original shape. The method and its properties are presented in 2D space but it can be easily extended to any dimension. Experimental verification and comparison with a few previously introduced methods are also included.

[1]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, SIGGRAPH 2010.

[2]  Wim H. Hesselink,et al.  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Gabriella Sanniti di Baja,et al.  Pruning Discrete and Semiocontinuous Skeletons , 1995, ICIAP.

[4]  Stefano Levialdi,et al.  Image Analysis and Processing , 1987 .

[5]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Valentin E. Brimkov,et al.  Digital Geometry Algorithms , 2012 .

[7]  Michel Couprie,et al.  Discrete Topological Transformations for Image Processing , 2012 .

[8]  Axe médiant discret : propriétés arithmétiques et algorithmes , 2009 .

[9]  Luc Vincent,et al.  Euclidean skeletons and conditional bisectors , 1992, Other Conferences.

[10]  Hugues Talbot,et al.  Robust skeletonization using the discrete lambda-medial axis , 2010 .

[11]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[12]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[14]  Alfred M. Bruckstein,et al.  Skeletonization via Distance Maps and Level Sets , 1995, Comput. Vis. Image Underst..

[15]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[16]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[17]  Hugues Talbot,et al.  Robust skeletonization using the discrete λ-medial axis , 2011, Pattern Recognit. Lett..

[18]  Mark Pauly,et al.  The scale axis transform , 2009, SCG '09.

[19]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[20]  F. Chazal,et al.  The λ-medial axis , 2005 .

[21]  Michel Couprie,et al.  Discrete Bisector Function and Euclidean Skeleton , 2005, DGCI.

[22]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[23]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[24]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[25]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .