Cartesian differential invariants in scale-space

We present a formalism for studying local image structure in a systematic, coordinate-independent, and robust way, based on scale-space theory, tensor calculus, and the theory of invariants. We concentrate ondifferential invariants. The formalism is of general applicability to the analysis of grey-tone images of various modalities, defined on aD-dimensional spatial domain.We propose a “diagrammar” of differential invariants and tensors, i.e., a diagrammatic representation of image derivatives in scale-space together with a set of simple rules for representing meaningful local image properties. All local image properties on a given level of inner scale can be represented in terms of such diagrams, and, vice versa, all diagrams represent coordinate-independent combinations of image derivatives, i.e., true image properties.We presentcomplete andirreducible sets of (nonpolynomial) differential invariants appropriate for the description of local image structure up to any desired order. Any differential invariant can be expressed in terms ofpolynomial invariants, pictorially represented by closed diagrams. Here we consider a complete, irreducible set of polynomial invariants up to second order (inclusive).Examples of differential invariants up to fourth order (inclusive), calculated for synthetic, noiseperturbed, 2-dimensional test images, are included to illustrate the main theory.

[1]  P. Gordan Ueber die Bildung der Resultante zweier Gleichungen , 1871 .

[2]  Felix . Klein,et al.  Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .

[3]  Über einen allgemeinen Gesichtspunkt für invariantentheoretische Untersuchungen im binären Formengebiete , 1887 .

[4]  Die Discriminante der Form 7. Gradesf=ax7 , 1888 .

[5]  D. Hilbert Über die Theorie der algebraischen Formen , 1890 .

[6]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[7]  Olga Taussky,et al.  Moderne Algebra , 1933 .

[8]  E. Cartan Les problèmes d'équivalence , 1937 .

[9]  H. Weyl The Classical Groups , 1940 .

[10]  D. E. Littlewood,et al.  Invariant theory, tensors and group characters , 1944, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  H. W. Turnbull,et al.  The Theory of Determinants, Matrices and Invariants , 1929 .

[12]  D. F. Lawden An introduction to tensor calculus and relativity , 1962 .

[13]  L. Weisner,et al.  Foundations of the theory of algebraic invariants , 1966 .

[14]  I. Schur,et al.  Vorlesungen über Invariantentheorie , 1968 .

[15]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[16]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[17]  G. Rota,et al.  The invariant theory of binary forms , 1984 .

[18]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Peter J. Olver,et al.  Invariant Theory, Equivalence Problems, and the Calculus of Variations , 1989 .

[20]  James J. Clark Authenticating Edges Produced by Zero-Crossing Algorithms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  M. Ann Piech,et al.  Decomposing the Laplacian , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  J. Koenderink The brain a geometry engine , 1990, Psychological research.

[24]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Max A. Viergever,et al.  Scale-Space: Its Natural Operators and Differential Invariants , 1991, IPMI.

[26]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[27]  Luc Van Gool,et al.  Semi-differential invariants for nonplanar curves , 1992 .

[28]  Max A. Viergever,et al.  General Intensity Transformations and Second Order Invariants , 1992 .

[29]  Jan J. Koenderink,et al.  Spatial Derivatives and the Propagation of Noise in Gaussian Scale Space , 1993, J. Vis. Commun. Image Represent..

[30]  Max A. Viergever,et al.  Images: Regular Tempered Distributions , 1994 .

[31]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[32]  J. Koenderink,et al.  Receptive field families , 1990, Biological Cybernetics.

[33]  Alfred Clebsch Theorie Der Binaren Algebraischen Formen , 2006 .