On the tractability of the Brownian Bridge algorithm

Recent results in the theory of quasi-Monte Carlo methods have shown that the weighted Koksma-Hlawka inequality gives better estimates for the error of quasi-Monte Carlo algorithms. We present a method for finding good weights for several classes of functions and apply it to certain algorithms using the Brownian Bridge construction, which are important for financial applications.

[1]  Anargyros Papageorgiou,et al.  The Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration , 2002, J. Complex..

[2]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[3]  Tony van Ravenstein The Three Gap Theorem (Steinhaus Conjecture) , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[4]  Stefan Heinrich Quantum Summation with an Application to Integration , 2002, J. Complex..

[5]  S. Joe Formulas for the Computation of the Weighted L 2 Discrepancy , 1997 .

[6]  P. Anderson The Fibonacci Shuffle Tree , 1998 .

[7]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[8]  Spassimir H. Paskov Computing High Dimensional Integrals with Applications to Finance , 1994 .

[9]  Edmund Hlawka Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .

[10]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[11]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[12]  Ian H. Sloan,et al.  QMC Integration — Beating Intractability by Weighting the Coordinate Directions , 2002 .

[13]  William J. Morokoff Generating Quasi-Random Paths for Stochastic Processes , 1998, SIAM Rev..

[14]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .

[15]  Spassimir Paskov New methodologies for valuing derivatives , 1994 .

[16]  A. Owen Detecting Near Linearity in High Dimensions , 1998 .

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[19]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..