On the tractability of the Brownian Bridge algorithm
暂无分享,去创建一个
[1] Anargyros Papageorgiou,et al. The Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration , 2002, J. Complex..
[2] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[3] Tony van Ravenstein. The Three Gap Theorem (Steinhaus Conjecture) , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[4] Stefan Heinrich. Quantum Summation with an Application to Integration , 2002, J. Complex..
[5] S. Joe. Formulas for the Computation of the Weighted L 2 Discrepancy , 1997 .
[6] P. Anderson. The Fibonacci Shuffle Tree , 1998 .
[7] S. C. Zaremba. Some applications of multidimensional integration by parts , 1968 .
[8] Spassimir H. Paskov. Computing High Dimensional Integrals with Applications to Finance , 1994 .
[9] Edmund Hlawka. Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .
[10] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[11] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[12] Ian H. Sloan,et al. QMC Integration — Beating Intractability by Weighting the Coordinate Directions , 2002 .
[13] William J. Morokoff. Generating Quasi-Random Paths for Stochastic Processes , 1998, SIAM Rev..
[14] S. Pliska,et al. Mathematics of Derivative Securities , 1998 .
[15] Spassimir Paskov. New methodologies for valuing derivatives , 1994 .
[16] A. Owen. Detecting Near Linearity in High Dimensions , 1998 .
[17] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[18] Fred J. Hickernell,et al. Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .
[19] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..