Tests and constructions of irreducible polynomials over finite fields

In this paper we focus on tests and constructions of irreducible polynomials over finite fields. We revisit Rabin’s (1980) algorithm providing a variant of it that improves Rabin’s cost estimate by a log n factor. We give a precise analysis of the probability that a random polynomial of degree n contains no irreducible factors of degree less than O(log n). This probability is naturally related to Ben-Or’s (1981) algorithm for testing irreducibility of polynomials over finite fields. We also compute the probability of a polynomial being irreducible when it has no irreducible factors of low degree. This probability is useful in the analysis of various algorithms for factoring polynomials over finite fields. We present an experimental comparison of these irreducibility methods when testing random polynomials.

[1]  M. C. R. Butler ON THE REDUCTIBILITY OF POLYNOMIALS OVER A FINITE FIELD , 1954 .

[2]  L. A. Shepp,et al.  Ordered cycle lengths in a random permutation , 1966 .

[3]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[4]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[5]  Michael Ben-Or,et al.  Probabilistic algorithms in finite fields , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[6]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[7]  E. Keith Lloyd The art of computer programming, vol. 2, seminumerical algorithms (2nd edition), Donald E. Knuth, Addison‐Wesley, Reading, Mass, 1981. No. of pages: xiv+688. Price: £17·95. ISBN 0 20103822 6 , 1982 .

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[10]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[11]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[12]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[13]  S. J. Abbott,et al.  A classical introduction to modern number theory (2nd edition) , by Kenneth Ireland and Michael Rosen. Pp 394. DM 98. 1990. ISBN 3-540-97329-X (Springer) , 1992, The Mathematical Gazette.

[14]  Arnold Knopfmacher,et al.  Counting irreducible factors of polynomials over a finite field , 1993, Discret. Math..

[15]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[16]  Ian F. Blake,et al.  Constructive problems for irreducible polynominals over finite fields , 1993, Information Theory and Applications.

[17]  Dickson Polynomials and Irreducible Polynomials Over Finite Fields , 1994 .

[18]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[19]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[20]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[21]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[22]  Philippe Flajolet,et al.  Random Polynomials and Polynomial Factorization , 1996, ICALP.

[23]  Joachim von zur Gathen,et al.  Arithmetic and factorization of polynomials over F_2 , 1996, ISSAC 1996.

[24]  Daniel Nelson Panario Rodriguez Combinatorial and algebraic aspects of polynomials over finite fields , 1997 .

[25]  Shuhong Gao,et al.  Density of Normal Elements , 1997 .

[26]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1998, Math. Comput..