Single-RF Index Shift Keying Aided Differential Space–Time Block Coding

We propose a new single-RF differential space–time block coding using index shift keying (DSTBC-ISK), which is the first differential space–time modulation (DSTM) scheme that can simultaneously achieve the following three imperative objectives: First, forming a finite-cardinality transmit-signals set; second, retaining a single-stream maximum-likelihood (ML) detection complexity; and third, offering a beneficial transmit diversity gain. In order to make a fair comparison, we also conceive a low-complexity single-stream detector for DSM. Furthermore, in order to improve the performance of finite-cardinality DSTM schemes at higher throughputs, we propose to generalize both differential amplitude shift keying (DASK) and amplitude shift keying (ASK), which subsume the existing two-/four-level-ring star quadratic–amplitude modulation (QAM) solutions as special cases. As a result of using star QAM signaling, the power of the DSTM's signal matrix becomes variable. Against this background, we further develop bespoke ML, minimum mean squared error, and least-square detectors for DSTM using DASK/ASK. Our simulation results demonstrate that the proposed DSTBC-ISK is capable of achieving substantial diversity gains over DSM without eroding its low transceiver complexity.

[1]  Ari Hottinen,et al.  Minimal non-orthogonality rate 1 space-time block code for 3+ Tx antennas , 2000, 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. ISSTA 2000. Proceedings (Cat. No.00TH8536).

[2]  Babak Hassibi,et al.  Cayley differential unitary space - Time codes , 2002, IEEE Trans. Inf. Theory.

[3]  Hamid Jafarkhani,et al.  A differential detection scheme for transmit diversity , 2000, IEEE Journal on Selected Areas in Communications.

[4]  Naoki Ishikawa,et al.  Unified Differential Spatial Modulation , 2014, IEEE Wireless Communications Letters.

[5]  Lajos Hanzo,et al.  Coherent and Differential Space-Time Shift Keying: A Dispersion Matrix Approach , 2010, IEEE Transactions on Communications.

[6]  Lajos Hanzo,et al.  Full-Diversity Dispersion Matrices From Algebraic Field Extensions for Differential Spatial Modulation , 2017, IEEE Transactions on Vehicular Technology.

[7]  Xiang-Gen Xia,et al.  Unitary signal constellations for differential space--Time modulation with two transmit antennas: Parametric codes, optimal designs, and bounds , 2002, IEEE Trans. Inf. Theory.

[8]  Frédérique E. Oggier,et al.  Cyclic Algebras for Noncoherent Differential Space–Time Coding , 2007, IEEE Transactions on Information Theory.

[9]  Lajos Hanzo,et al.  Near-Capacity Multi-Functional MIMO Systems , 2009 .

[10]  William Webb,et al.  Bandwidth efficient QAM schemes for Rayleigh fading channels , 1990 .

[11]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[12]  Li Wang,et al.  Two Decades of MIMO Design Tradeoffs and Reduced-Complexity MIMO Detection in Near-Capacity Systems , 2017, IEEE Access.

[13]  Robert W. Heath,et al.  Exploiting Spatial Channel Covariance for Hybrid Precoding in Massive MIMO Systems , 2017, IEEE Transactions on Signal Processing.

[14]  Lajos Hanzo,et al.  Near-Capacity Multi-Functional MIMO Systems: Sphere-Packing, Iterative Detection and Cooperation , 2009 .

[15]  Yue Xiao,et al.  A Low-Complexity Detection Scheme for Differential Spatial Modulation , 2015, IEEE Communications Letters.

[16]  Shinya Sugiura Coherent Versus Non-Coherent Reconfigurable Antenna Aided Virtual MIMO Systems , 2014, IEEE Signal Processing Letters.

[17]  Thomas L. Marzetta,et al.  Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading , 2000, IEEE Trans. Inf. Theory.

[18]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[19]  Constantinos B. Papadias,et al.  A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes , 2009, IEEE Transactions on Wireless Communications.

[20]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[21]  Lutz H.-J. Lampe,et al.  Low-complexity iterative demodulation for noncoherent coded transmission over Ricean-fading channels , 2001, IEEE Trans. Veh. Technol..

[22]  Xiang-Gen Xia Differentially en/decoded orthogonal space-time block codes with APSK signals , 2002, Proceedings IEEE International Symposium on Information Theory,.

[23]  Philippa A. Martin Differential Spatial Modulation for APSK in Time-Varying Fading Channels , 2015, IEEE Communications Letters.

[24]  Li Wang,et al.  Multiple-Symbol Differential Sphere Detection Aided Differential Space-Time Block Codes Using QAM Constellations , 2011, IEEE Signal Processing Letters.

[25]  Xiang Cheng,et al.  A Low-Complexity Near-ML Differential Spatial Modulation Detector , 2015, IEEE Signal Processing Letters.

[26]  Xiang Cheng,et al.  A differential scheme for Spatial Modulation , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[27]  Wei Yu,et al.  Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays , 2016, IEEE Journal of Selected Topics in Signal Processing.

[28]  Constantinos B. Papadias,et al.  Improved quasi-orthogonal codes through constellation rotation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Thomas L. Marzetta,et al.  Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.

[30]  Vahid Tarokh,et al.  Differential space time block codes using nonconstant modulus constellations , 2003, IEEE Trans. Signal Process..

[31]  Hamid Jafarkhani A quasi-orthogonal space-time block code , 2001, IEEE Trans. Commun..

[32]  Robert W. Heath,et al.  Linear dispersion codes for MIMO systems based on frame theory , 2002, IEEE Trans. Signal Process..

[33]  Manav R. Bhatnagar,et al.  Precoded DOSTBC over Rayleigh Channels , 2007, J. Electr. Comput. Eng..

[34]  Frédérique E. Oggier,et al.  Algebraic Cayley Differential Space–Time Codes , 2007, IEEE Transactions on Information Theory.

[35]  Lajos Hanzo,et al.  Hybrid Beamforming in mm-Wave MIMO Systems Having a Finite Input Alphabet , 2016, IEEE Transactions on Communications.

[36]  Li Wang,et al.  Soft-Decision Multiple-Symbol Differential Sphere Detection and Decision-Feedback Differential Detection for Differential QAM Dispensing with Channel Estimation in the Face of Rapidly Fading Channels , 2016, IEEE Transactions on Wireless Communications.

[37]  Hamid Jafarkhani,et al.  Multiple transmit antenna differential detection from generalized orthogonal designs , 2001, IEEE Trans. Inf. Theory.

[38]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[39]  Lajos Hanzo,et al.  Multiple-Symbol Differential Sphere Detection and Decision-Feedback Differential Detection Conceived for Differential QAM , 2016, IEEE Transactions on Vehicular Technology.

[40]  Lajos Hanzo,et al.  On the MIMO channel capacity of multidimensional signal sets , 2006, IEEE Transactions on Vehicular Technology.

[41]  Lajos Hanzo,et al.  Reduced-Complexity Noncoherent Soft-Decision-Aided DAPSK Dispensing With Channel Estimation , 2013, IEEE Transactions on Vehicular Technology.

[42]  P. Stoica,et al.  Differential modulation using space-time block codes , 2002, IEEE Signal Processing Letters.

[43]  Mohamed Oussama Damen,et al.  Universal space-time coding , 2003, IEEE Trans. Inf. Theory.

[44]  Amir Averbuch,et al.  Unitary Nongroup STBC From Cyclic Algebras , 2006, IEEE Transactions on Information Theory.

[45]  B. Hassibi,et al.  Three-transmit-antenna space-time codes based on SU(3) , 2005, IEEE Transactions on Signal Processing.

[46]  Branka Vucetic,et al.  Differential Space‐Time Block Codes , 2005 .

[47]  Meixia Tao,et al.  Differential space-time block codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[48]  Lajos Hanzo,et al.  Reduced-Complexity ML Detection and Capacity-Optimized Training for Spatial Modulation Systems , 2014, IEEE Transactions on Communications.

[49]  Manav R. Bhatnagar,et al.  Double-differential orthogonal space-time block codes for arbitrarily correlated Rayleigh channels with carrier offsets , 2010, IEEE Transactions on Wireless Communications.

[50]  Lajos Hanzo,et al.  Reduced-Complexity Soft-Decision Multiple-Symbol Differential Sphere Detection , 2015, IEEE Transactions on Communications.

[51]  Costas N. Georghiades,et al.  A full-rate, full-diversity four-antenna quasi-orthogonal space-time block code , 2005, IEEE Transactions on Wireless Communications.

[52]  Kenneth L. Clarkson,et al.  Fast multiple-antenna differential decoding , 2001, IEEE Trans. Commun..

[53]  S. Brink Convergence of iterative decoding , 1999 .

[54]  Lajos Hanzo,et al.  Reduced-Complexity Coherent Versus Non-Coherent QAM-Aided Space-Time Shift Keying , 2011, IEEE Transactions on Communications.

[55]  Petre Stoica,et al.  Space-Time block codes: A maximum SNR approach , 2001, IEEE Trans. Inf. Theory.

[56]  Manav R. Bhatnagar,et al.  Differential coding for non-orthogonal space-time block codes with non-unitary constellations over arbitrarily correlated rayleigh channels , 2009, IEEE Transactions on Wireless Communications.

[57]  B. Sundar Rajan,et al.  Single-symbol maximum likelihood decodable linear STBCs , 2006, IEEE Transactions on Information Theory.

[58]  Lajos Hanzo,et al.  Spatial Modulation and Space-Time Shift Keying: Optimal Performance at a Reduced Detection Complexity , 2013, IEEE Transactions on Communications.

[59]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[60]  Xiang-Gen Xia,et al.  Iterative Eigenvalue Decomposition and Multipath-Grouping Tx/Rx Joint Beamformings for Millimeter-Wave Communications , 2015, IEEE Transactions on Wireless Communications.

[61]  Xiaodong Wang,et al.  Design of minimum error-rate Cayley differential unitary space-time codes , 2005, IEEE Journal on Selected Areas in Communications.

[62]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[63]  Xiang Cheng,et al.  On the Achievable Rate of OFDM With Index Modulation , 2016, IEEE Transactions on Signal Processing.

[64]  Lajos Hanzo,et al.  Reduced-Complexity Noncoherently Detected Differential Space-Time Shift Keying , 2011, IEEE Signal Process. Lett..

[65]  Ari Hottinen,et al.  Square-matrix embeddable space-time block codes for complex signal constellations , 2002, IEEE Trans. Inf. Theory.

[66]  Brian L. Hughes,et al.  Optimal space-time constellations from groups , 2003, IEEE Trans. Inf. Theory.

[67]  Xiang Cheng,et al.  Differential Spatial Modulation , 2015, IEEE Transactions on Vehicular Technology.

[68]  Lajos Hanzo,et al.  Single-Carrier SM-MIMO: A Promising Design for Broadband Large-Scale Antenna Systems , 2016, IEEE Communications Surveys & Tutorials.

[69]  Brian L. Hughes,et al.  Differential space-time modulation , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[70]  Lie-Liang Yang,et al.  Signal Detection in Antenna-Hopping Space-Division Multiple-Access Systems With Space-Shift Keying Modulation , 2012, IEEE Transactions on Signal Processing.

[71]  Bertrand M. Hochwald,et al.  Differential unitary space-time modulation , 2000, IEEE Trans. Commun..

[72]  Yue Xiao,et al.  High-Rate APSK-Aided Differential Spatial Modulation: Design Method and Performance Analysis , 2017, IEEE Communications Letters.

[73]  Harald Haas,et al.  Spatial Modulation , 2008, IEEE Transactions on Vehicular Technology.