Nickel: A very fast diffuser in silicon

Nickel is increasingly used in both IC and photovoltaic device fabrication, yet it has the potential to create highly recombination-active precipitates in silicon. For nearly three decades, the accepted nickel diffusivity in silicon has been DNi(T)=2.3×10−3exp(−0.47 eV/kBT) cm2/s, a surprisingly low value given reports of rapid nickel diffusion in industrial applications. In this paper, we employ modern experimental methods to measure the higher nickel diffusivity DNi(T)=(1.69±0.74)×10−4exp(−0.15±0.04 eV/kBT) cm2/s. The measured activation energy is close to that predicted by first-principles theory using the nudged-elastic-band method. Our measured diffusivity of nickel is higher than previously published values at temperatures below 1150 °C, and orders of magnitude higher when extrapolated to room temperature.

[1]  Tu,et al.  Low-temperature diffusion and solubility of Ni in P-doped Czochralski-grown Si. , 1986, Physical review. B, Condensed matter.

[2]  S. Estreicher,et al.  Structural, electrical, and vibrational properties of Ti-H and Ni-H complexes in Si , 2010 .

[3]  S. Estreicher,et al.  Hydrogen in C‐rich Si and the diffusion of vacancy–H complexes , 2012 .

[4]  S. Öberg,et al.  Calculations of Electrical Levels of Deep Centers: Application to Au-H and Ag-H Defects in Silicon , 1999 .

[5]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[6]  V. Moruzzi,et al.  Calculated electronic properties of ordered alloys : a handbook : the elements and their 3d/3d and 4d/4d alloys , 1995 .

[7]  P. Wilshaw,et al.  THE EFFECT OF DIFFERENT TRANSITION METALS ON THE RECOMBINATION EFFICIENCY OF DISLOCATIONS , 1991 .

[8]  M. Scheffler,et al.  Activation energies for diffusion of defects in silicon: the role of the exchange-correlation functional. , 2011, Angewandte Chemie.

[9]  E. Weber,et al.  Transient ion drift detection of low level copper contamination in silicon , 1997 .

[10]  F. Ruymgaart,et al.  Thermodynamics of impurities in semiconductors , 2004 .

[11]  John H. Hubbell,et al.  A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell X‐Ray Fluorescence Yields , 1994 .

[12]  Robert C. Cammarata,et al.  In situ transmission electron microscopy studies of silicide‐mediated crystallization of amorphous silicon , 1992 .

[13]  E. Weber,et al.  Electrical properties and recombination activity of copper, nickel and cobalt in silicon , 1998 .

[14]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[15]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[16]  A. Istratov,et al.  Nickel solubility in intrinsic and doped silicon , 2005 .

[17]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  Y. Ozaki,et al.  Effects of Wet Cleaning on Si Contaminated with Heavy Metals during Reactive Ion Etching , 1985 .

[20]  H. Savin,et al.  Contactless Diagnostic Tools and Metallic Contamination in the Semiconductor Industry , 2007 .

[21]  R. Pritchard,et al.  Dipole moments of H 2 , D 2 , and HD molecules in Czochralski silicon , 1999 .

[22]  Stefan K. Estreicher,et al.  Theory of defects in semiconductors , 2007 .

[23]  Seifert,et al.  Out-diffusion and precipitation of copper in silicon: An electrostatic model , 2000, Physical review letters.

[24]  S. Estreicher,et al.  Temperature and sample dependence of the binding free energies of complexes in crystals: The case of acceptor-oxygen complexes in Si , 2005 .

[25]  R. Pritchard,et al.  Interactions of hydrogen molecules with bond-centered interstitial oxygen and another defect center in silicon , 1997 .

[26]  믹손 데이비드,et al.  A reactor with silicide-coated metal surfaces , 2010 .

[27]  W. Schröter,et al.  Electrical and recombination properties of copper-silicide precipitates in silicon , 1998 .

[28]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[29]  Estreicher,et al.  Titanium and copper in Si: Barriers for diffusion and interactions with hydrogen. , 1992, Physical Review B (Condensed Matter).

[30]  S. Estreicher,et al.  Ti, Fe, and Ni in Si and their interactions with the vacancy and theAcenter: A theoretical study , 2010 .

[31]  Tu,et al.  Diffusivity and solubility of Ni (63Ni) in monocrystalline Si. , 1989, Physical review. B, Condensed matter.

[32]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[33]  Eicke R. Weber,et al.  Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon , 1998 .

[34]  Matthew D. Pickett,et al.  Chemical natures and distributions of metal impurities in multicrystalline silicon materials , 2005 .

[35]  Lih J. Chen,et al.  Silicide technology for integrated circuits , 2004 .

[36]  R. Drosd,et al.  Analysis of plate and colony precipitates decorating stacking faults in a single‐crystal silicon , 1988 .

[37]  Pantelides,et al.  Theory of hydrogen diffusion and reactions in crystalline silicon. , 1989, Physical review letters.

[38]  M. Shabani,et al.  A Quantitative Method of Metal Impurities Depth Profiling for Gettering Evaluation in Silicon Wafers , 1997 .

[39]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[40]  K. Wambach,et al.  Impact of Metal Contamination in Silicon Solar Cells , 2010 .

[41]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[42]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[43]  Pantelides,et al.  Theory of hydrogen diffusion and reactions in crystalline silicon. , 1988, Physical review letters.

[44]  H. Bonzel Diffusion of Nickel in Silicon , 1967, April 1.

[45]  S. Johnston,et al.  Effect of nickel contamination on high carrier lifetime n-type crystalline silicon , 2012 .

[46]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[47]  Tonio Buonassisi,et al.  Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs , 2012 .

[48]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[49]  Klaus Graff,et al.  Metal impurities in silicon-device fabrication , 1994 .

[50]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[51]  R. Falster,et al.  Oxygen precipitate precursors and size thresholds for the preferential nucleation for copper and nickel precipitation in silicon: the detection of copper and nickel contamination by minority carrier lifetime methods , 1996 .

[52]  David Alan Drabold,et al.  Molecular-dynamics determination of electronic and vibrational spectra, and equilibrium structures of small Si clusters. , 1990, Physical review. B, Condensed matter.

[53]  H. Savin,et al.  Detection of Nickel in Silicon by Recombination Lifetime Measurements , 2007 .

[54]  M. Pickett,et al.  Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current , 2005 .

[55]  V. L. Moruzzi,et al.  CALCULATED ELECTRONIC PROPERTIES OF ORDERED ALLOYS: A HANDBOOK , 1995 .

[56]  R. N. Hall,et al.  Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide , 1964 .

[57]  W. Schröter,et al.  Precipitation behaviour of nickel in silicon , 1989 .

[58]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .