Homoclinic dynamics in a restricted four-body problem: transverse connections for the saddle-focus equilibrium solution set
暂无分享,去创建一个
[1] J. D. M. James,et al. Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence , 2019, Celestial Mechanics and Dynamical Astronomy.
[2] J. D. M. James,et al. Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence , 2019, Celestial Mechanics and Dynamical Astronomy.
[3] J. D. M. James,et al. Chaotic motions in the restricted four body problem via Devaney's saddle-focus homoclinic tangle theorem , 2017, Journal of Differential Equations.
[4] J. Palacián,et al. Oscillatory motions in restricted N -body problems , 2018, Journal of Differential Equations.
[5] Jason D. Mireles-James,et al. Analytic Continuation of Local (Un)Stable Manifolds with Rigorous Computer Assisted Error Bounds , 2017, SIAM J. Appl. Dyn. Syst..
[6] A. Bengochea,et al. Horseshoe orbits in the restricted four-body problem , 2017 .
[7] Zhikun She,et al. Study on Chaotic Behavior of the Restricted Four-Body Problem with an Equilateral Triangle Configuration , 2017, Int. J. Bifurc. Chaos.
[8] K. E. Papadakis. Families of asymmetric periodic solutions in the restricted four-body problem , 2016 .
[9] J. D. M. James,et al. Automatic differentiation for Fourier series and the radii polynomial approach , 2016 .
[10] Christian Reinhardt,et al. Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra , 2016, J. Nonlinear Sci..
[11] K. E. Papadakis. Families of three-dimensional periodic solutions in the circular restricted four-body problem , 2016 .
[12] J. Burgos-García. Families of periodic orbits in the planar Hill’s four-body problem , 2015, 1508.00875.
[13] M. Alvarez-Ramírez,et al. Transport orbits in an equilateral restricted four-body problem , 2015 .
[14] M. Gidea,et al. Hill’s approximation in a restricted four-body problem , 2014, 1412.3775.
[15] Martha Alvarez-Ramírez,et al. Global Regularization of a Restricted Four-Body Problem , 2014, Int. J. Bifurc. Chaos.
[16] Jean F. Barros,et al. Bifurcations and Enumeration of Classes of Relative Equilibria in the Planar Restricted Four-Body Problem , 2014, SIAM J. Math. Anal..
[17] Zhikun She,et al. The existence of a Smale horseshoe in a planar circular restricted four-body problem , 2014 .
[18] Andrey Shilnikov,et al. Showcase of Blue Sky Catastrophes , 2013, Int. J. Bifurc. Chaos.
[19] Zhikun She,et al. The existence of transversal homoclinic orbits in a planar circular restricted four-body problem , 2013 .
[20] Joaquín Delgado,et al. On the “blue sky catastrophe” termination in the restricted four-body problem , 2012, 1210.0144.
[21] Joaquín Delgado,et al. Periodic orbits in the restricted four-body problem with two equal masses , 2012, 1205.3446.
[22] J. D. M. James,et al. PARAMETERIZATION OF INVARIANT MANIFOLDS BY REDUCIBILITY FOR VOLUME PRESERVING AND SYMPLECTIC MAPS , 2012 .
[23] K. E. Papadakis,et al. Equilibrium Points and their stability in the Restricted Four-Body Problem , 2011, Int. J. Bifurc. Chaos.
[24] K. E. Papadakis,et al. Families of periodic orbits in the restricted four-body problem , 2011 .
[25] Jean F. Barros,et al. The Set of Degenerate Central Configurations in the Planar Restricted Four-Body Problem , 2011, SIAM J. Math. Anal..
[26] Esther Barrabés,et al. Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP , 2009 .
[27] M. Alvarez-Ramírez,et al. Dynamical Aspects of an Equilateral Restricted Four-Body Problem , 2009 .
[28] Eduardo S. G. Leandro. On the central configurations of the planar restricted four-body problem , 2006 .
[29] Ernest Fontich Julià,et al. The parameterization method for invariant manifolds , 2006 .
[30] Josep J. Masdemont,et al. Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems , 2005 .
[31] E. Doedel,et al. Successive continuation for locating connecting orbits , 1996, Numerical Algorithms.
[32] M. Gidea,et al. Chaotic transfers in three- and four-body systems☆ , 2003 .
[33] B. Schnizer,et al. Stabilitätsuntersuchungen im restringierten Vierkörperproblem , 2003 .
[34] R. Canosa,et al. The parameterization method for invariant manifolds III: overview and applications , 2003 .
[35] R. Canosa,et al. The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .
[36] R. Canosa,et al. The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .
[37] L. Lerman. Dynamical Phenomena near a Saddle-Focus Homoclinic Connection in a Hamiltonian System , 2000 .
[38] Shane D. Ross,et al. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. , 2000, Chaos.
[39] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[40] June-Gi Kim. HOMOCLINIC ORBITS FOR HAMILTONIAN SYSTEMS , 1995 .
[41] L. Lerman. Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus. , 1991, Chaos.
[42] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[43] Carles Simó,et al. Relative equilibrium solutions in the four body problem , 1978 .
[44] J. Henrard,et al. Proof of a conjecture of E. Strömgren , 1973 .
[45] L. P. Šil'nikov,et al. A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .
[46] M. Moutsoulas,et al. Theory of orbits , 1968 .
[47] V. Szebehely,et al. A family of retrograde orbits around the triangular equilibrium points , 1967 .
[48] V. Szebehely,et al. A class of E. Stromgren's direct orbits in the restricted problem , 1967 .
[49] Eugene Rabe,et al. DETERMINATION AND SURVEY OF PERIODIC TROJAN ORBITS IN THE RESTRICTED PROBLEM OF THREE BODIES , 1961 .
[50] E. Strömgren. Connaisance actuelle des orbites dans le problème des trois corps , 1933 .
[51] C. V. L. Charlier,et al. Periodic Orbits , 1898, Nature.