Dynamic Asset Allocation with Uncertain Jump Risks: A Pathwise Optimization Approach

This paper studies the dynamic portfolio choice problem with ambiguous jump risks in a multidimensional jump-diffusion framework. We formulate a continuous-time model of incomplete market with uncertain jumps. We develop an efficient pathwise optimization procedure based on the martingale methods and minimax results to obtain closed-form solutions for the indirect utility function and the probability of the worst scenario. We then introduce an orthogonal decomposition method for the multidimensional problem to derive the optimal portfolio strategy explicitly under ambiguity aversion to jump risks. Finally, we calibrate our model to real market data drawn from 10 international indices and illustrate our results by numerical examples. The certainty equivalent losses affirm the importance of jump uncertainty in optimal portfolio choice.

[1]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[2]  Sanjiv Ranjan Das,et al.  Systemic Risk and International Portfolio Choice , 2002 .

[3]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[4]  Jonathan M. Borwein,et al.  On Fan's minimax theorem , 1986, Math. Program..

[5]  Lars Peter Hansen,et al.  A QUARTET OF SEMIGROUPS FOR MODEL SPECIFICATION, ROBUSTNESS, PRICES OF RISK, AND MODEL DETECTION , 2003 .

[6]  Martin Schneider,et al.  IID: independently and indistinguishably distributed , 2003, J. Econ. Theory.

[7]  Jun Pan,et al.  An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks , 2005 .

[8]  Roger J. A. Laeven,et al.  Robust Portfolio Choice and Indifference Valuation , 2014, Math. Oper. Res..

[9]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[10]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[11]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[12]  Walter Schachermayer,et al.  ARBITRAGE AND FREE LUNCH WITH BOUNDED RISK FOR UNBOUNDED CONTINUOUS PROCESSES , 1994 .

[13]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[14]  Tan Wang,et al.  Conditional preferences and updating , 2003, J. Econ. Theory.

[15]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[16]  Alexander Shapiro,et al.  Conditional Risk Mappings , 2005, Math. Oper. Res..

[17]  Isabelle Bajeux-Besnainou,et al.  Dynamic Asset Allocation for Stocks, Bonds, and Cash , 2003 .

[18]  Xiuli Chao,et al.  On martingale measures when asset returns have unpredictable jumps , 1996 .

[19]  ching-tang wu,et al.  Duality theory for optimal investments under model uncertainty , 2005 .

[20]  Christian Riis Flor,et al.  Robust portfolio choice with stochastic interest rates , 2014 .

[21]  Pascal J. Maenhout Robust Portfolio Rules and Asset Pricing , 2004 .

[22]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[23]  I. Drechsler,et al.  Uncertainty, Time-Varying Fear, and Asset Prices , 2013 .

[24]  William T. Ziemba,et al.  A stochastic programming model using an endogenously determined worst case risk measure for dynamic asset allocation , 2001, Math. Program..

[25]  Teemu Pennanen,et al.  Convex Duality in Stochastic Optimization and Mathematical Finance , 2011, Math. Oper. Res..

[26]  Nicole Branger,et al.  Robust Portfolio Choice with Uncertainty About Jump and Diffusion Risk , 2012 .

[27]  W. Schachermayer,et al.  Necessary and sufficient conditions in the problem of optimal investment in incomplete markets , 2003 .

[28]  Xing Jin,et al.  Decomposition of Optimal Portfolio Weight in a Jump-Diffusion Model and Its Applications , 2012 .

[29]  T. R. Hurd,et al.  Portfolio choice with jumps: A closed-form solution , 2009, 0906.2324.

[30]  Marco Frittelli,et al.  On the Existence of Minimax Martingale Measures , 2002 .

[31]  Frank Thomas Seifried,et al.  Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach , 2010, Math. Oper. Res..

[32]  F. Rinaldi,et al.  Ambiguity in asset pricing and portfolio choice: a review of the literature , 2010 .

[33]  S. Berberian Measure and integration , 1962 .

[34]  I. Drechsler Uncertainty, Time-Varying Fear, and Asset Prices: Uncertainty, Time-Varying Fear, and Asset Prices , 2013 .

[35]  P. Brémaud Point Processes and Queues , 1981 .

[36]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..