Bacterial Quorum Sensing and Microbial Community Interactions

ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.

[1]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[2]  T. Pitt,et al.  2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. , 1992, The Journal of antimicrobial chemotherapy.

[3]  E. Greenberg,et al.  Bacterial Quorum Sensing and Metabolic Incentives to Cooperate , 2012, Science.

[4]  R. Lamont,et al.  LuxS-Based Signaling in Streptococcus gordonii: Autoinducer 2 Controls Carbohydrate Metabolism and Biofilm Formation with Porphyromonas gingivalis , 2003, Journal of bacteriology.

[5]  M. Kühl,et al.  Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits In Vivo-Like Characteristics , 2017, Applied and Environmental Microbiology.

[6]  R. Lenski,et al.  Developmental cheating in the social bacterium Myxococcus xanthus , 2000, Nature.

[7]  E. Greenberg,et al.  Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Schuster,et al.  Why Quorum Sensing Controls Private Goods , 2017, Front. Microbiol..

[9]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[10]  E. T. Palva,et al.  Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora , 2006, Molecular microbiology.

[11]  S. West,et al.  Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus , 2013, Infection and Immunity.

[12]  J. M. Dow,et al.  Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa , 2008, Molecular microbiology.

[13]  A. Aertsen,et al.  Role of Quorum Sensing and Antimicrobial Component Production by Serratia plymuthica in Formation of Biofilms, Including Mixed Biofilms with Escherichia coli , 2006, Applied and Environmental Microbiology.

[14]  S. West,et al.  Kin selection, quorum sensing and virulence in pathogenic bacteria , 2012, Proceedings of the Royal Society B: Biological Sciences.

[15]  A. Drlica-Wagner,et al.  Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. , 2008, The Journal of infectious diseases.

[16]  Bonnie L. Bassler,et al.  Quorum sensing signal–response systems in Gram-negative bacteria , 2016, Nature Reviews Microbiology.

[17]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[18]  A. Griffin,et al.  Evolutionary Explanations for Cooperation , 2007, Current Biology.

[19]  Shawn R Campagna,et al.  Autoinducer 2: a concentration‐dependent signal for mutualistic bacterial biofilm growth , 2006, Molecular microbiology.

[20]  S. B. Peterson,et al.  Bacterial danger sensing. , 2015, Journal of molecular biology.

[21]  C. Waters,et al.  Bacterial Quorum Sensing Stabilizes Cooperation by Optimizing Growth Strategies , 2016, Applied and Environmental Microbiology.

[22]  A. Buckling,et al.  Cooperation and virulence of clinical Pseudomonas aeruginosa populations , 2009, Proceedings of the National Academy of Sciences.

[23]  M. Federle,et al.  Peptide pheromone signaling in Streptococcus and Enterococcus. , 2014, FEMS microbiology reviews.

[24]  J. V. D. Ploeg,et al.  Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic Competence , 2005 .

[25]  R. Beavis,et al.  Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Eldar,et al.  Facultative cheating supports the coexistence of diverse quorum-sensing alleles , 2016, Proceedings of the National Academy of Sciences.

[27]  K. Foster,et al.  Pleiotropy as a mechanism to stabilize cooperation , 2004, Nature.

[28]  S. Ulitzur,et al.  GroESL proteins facilitate binding of externally added inducer by LuxR protein-containing E. coli cells. , 1993, Journal of bioluminescence and chemiluminescence.

[29]  Paul Williams,et al.  Quorum-sensing and cheating in bacterial biofilms , 2012, Proceedings of the Royal Society B: Biological Sciences.

[30]  J W LIGHTBOWN,et al.  Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. , 1956, The Biochemical journal.

[31]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[32]  Margret I. Moré,et al.  Enzymatic Synthesis of a Quorum-Sensing Autoinducer Through Use of Defined Substrates , 1996, Science.

[33]  John C. Anderson,et al.  Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA , 2002, Nature.

[34]  Jun Zhu,et al.  Genetic and Phenotypic Diversity of Quorum-Sensing Systems in Clinical and Environmental Isolates of Vibrio cholerae , 2006, Infection and Immunity.

[35]  W. Goldman,et al.  Phenotypic variation and intracellular parasitism by histoplasma Capsulatum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. Chao,et al.  Structured habitats and the evolution of anticompetitor toxins in bacteria. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[38]  C. Fuqua,et al.  The QscR Quorum-Sensing Regulon of Pseudomonas aeruginosa: an Orphan Claims Its Identity , 2006, Journal of bacteriology.

[39]  B. Bassler,et al.  A genetic analysis of the function of LuxO, a two‐component response regulator involved in quorum sensing in Vibrio harveyi , 1999, Molecular microbiology.

[40]  E. Greenberg,et al.  Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. , 2001, Annual review of genetics.

[41]  M. Whiteley,et al.  Nutritional Cues Control Pseudomonas aeruginosa Multicellular Behavior in Cystic Fibrosis Sputum , 2007, Journal of bacteriology.

[42]  E. Guédon,et al.  Quorum-Sensing Regulation of the Production of Blp Bacteriocins in Streptococcus thermophilus , 2007, Journal of bacteriology.

[43]  J H Lamb,et al.  Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. , 1997, Microbiology.

[44]  E. Greenberg,et al.  Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Nakayama,et al.  Description of a 23.9-Kilobase Chromosomal Deletion Containing a Region Encoding fsr Genes Which Mainly Determines the Gelatinase-Negative Phenotype of Clinical Isolates of Enterococcus faecalis in Urine , 2002, Applied and Environmental Microbiology.

[46]  S. C. Winans,et al.  LuxR‐type quorum‐sensing regulators that are detached from common scents , 2010, Molecular microbiology.

[47]  T. Tolker-Nielsen,et al.  Nonrandom Distribution of Pseudomonas aeruginosa and Staphylococcus aureus in Chronic Wounds , 2009, Journal of Clinical Microbiology.

[48]  M. Whiteley,et al.  Staphylococcus aureus Serves as an Iron Source for Pseudomonas aeruginosa during In Vivo Coculture , 2005, Journal of bacteriology.

[49]  F. O'Gara,et al.  Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. , 2014, Microbiology.

[50]  M. Mazzola,et al.  Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats , 1992, Applied and environmental microbiology.

[51]  C. Fuqua,et al.  Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Griffin,et al.  Cooperation and conflict in quorum-sensing bacterial populations , 2007, Nature.

[53]  A. Ellington,et al.  Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps” , 2010, mBio.

[54]  G. Pier,et al.  Transcription of Quorum-Sensing System Genes inClinical and Environmental Isolates of Pseudomonasaeruginosa , 2003, Journal of bacteriology.

[55]  F. Rezzonico,et al.  Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria , 2008, BMC Microbiology.

[56]  Helen E Blackwell,et al.  Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum , 2011, Proceedings of the National Academy of Sciences.

[57]  E. Greenberg,et al.  Bacterial quorum sensing, cooperativity, and anticipation of stationary-phase stress , 2012, Proceedings of the National Academy of Sciences.

[58]  Vittorio Venturi,et al.  Co-Swarming and Local Collapse: Quorum Sensing Conveys Resilience to Bacterial Communities by Localizing Cheater Mutants in Pseudomonas aeruginosa , 2010, PloS one.

[59]  C. Di Serio,et al.  Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis Airways Influences Virulence of Staphylococcus aureus In Vitro and Murine Models of Co-Infection , 2014, PloS one.

[60]  Gholson J. Lyon,et al.  Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria , 2004, Peptides.

[61]  S. C. Winans Bacterial Esperanto , 2002, Nature Structural Biology.

[62]  K. Nickerson,et al.  Quorum Sensing in the Dimorphic FungusCandida albicans Is Mediated by Farnesol , 2001, Applied and Environmental Microbiology.

[63]  E. Greenberg,et al.  Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants , 2016, eLife.

[64]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[65]  G. Dunny,et al.  A paracrine peptide sex pheromone also acts as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Joon-Hee Lee,et al.  Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum‐sensing transcription factor , 2006, Molecular microbiology.

[67]  Eamonn B. Mallon,et al.  Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis , 2001, Behavioral Ecology and Sociobiology.

[68]  E. Greenberg,et al.  Acyl homoserine-lactone quorum-sensing signal generation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Colmer,et al.  Characterization of elastase-deficient clinical isolates of Pseudomonas aeruginosa , 1996, Infection and immunity.

[70]  J. Kornblum,et al.  Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. , 1993, The EMBO journal.

[71]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[72]  Daniel M. Cornforth,et al.  Competition sensing: the social side of bacterial stress responses , 2013, Nature Reviews Microbiology.

[73]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[74]  P. Rainey,et al.  Evolution of cooperation and conflict in experimental bacterial populations , 2003, Nature.

[75]  A. Dandekar,et al.  A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa , 2018, Front. Microbiol..

[76]  B. Bassler,et al.  Ligand and antagonist driven regulation of the Vibrio cholerae quorum-sensing receptor CqsS , 2012, Molecular microbiology.

[77]  Eamonn B. Mallon,et al.  Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis , 2002, Behavioral Ecology and Sociobiology.

[78]  S. Lewenza,et al.  Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. , 2002, Canadian journal of microbiology.

[79]  G. Dunny Enterococcal sex pheromones: signaling, social behavior, and evolution. , 2013, Annual review of genetics.

[80]  R. Geffers,et al.  A Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa Displays Enhanced Virulence and Antimicrobial Resistance , 2005, Journal of bacteriology.

[81]  Jun Zhu,et al.  “Quorum Non-Sensing”: Social Cheating and Deception in Vibrio cholerae , 2015, Applied and Environmental Microbiology.

[82]  M. Otto,et al.  Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone , 2000, Archives of Microbiology.

[83]  R. Bertram,et al.  Small-Colony Variant Selection as a Survival Strategy for Staphylococcus aureus in the Presence of Pseudomonas aeruginosa , 2009, Applied and Environmental Microbiology.

[84]  Benjamin Neuenswander,et al.  Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum , 2018, The ISME Journal.

[85]  Sam P. Brown,et al.  Combinatorial quorum sensing allows bacteria to resolve their social and physical environment , 2014, Proceedings of the National Academy of Sciences.

[86]  C. Fuqua,et al.  Bacterial competition: surviving and thriving in the microbial jungle , 2010, Nature Reviews Microbiology.

[87]  R. Novick,et al.  agr function in clinical Staphylococcus aureus isolates. , 2008, Microbiology.

[88]  F. Weissing,et al.  Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms , 2014, The ISME Journal.

[89]  John E Mittler,et al.  Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model , 2012, The ISME Journal.

[90]  Edward M. Marcotte,et al.  Parallel Evolution in Pseudomonas aeruginosa over 39,000 Generations In Vivo , 2010, mBio.

[91]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[92]  E. Greenberg,et al.  Global Analysis of the Burkholderia thailandensis Quorum Sensing-Controlled Regulon , 2014, Journal of bacteriology.

[93]  David A. D'Argenio,et al.  Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa , 2006, Proceedings of the National Academy of Sciences.

[94]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979 .

[95]  S. Diggle,et al.  Development of an Ex Vivo Porcine Lung Model for Studying Growth, Virulence, and Signaling of Pseudomonas aeruginosa , 2014, Infection and Immunity.

[96]  E. Greenberg,et al.  Transcriptome Analysis of the Vibrio fischeri LuxR-LuxI Regulon , 2007, Journal of bacteriology.

[97]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[98]  C. Reimmann,et al.  Characterization of Cell-to-Cell Signaling-Deficient Pseudomonas aeruginosa Strains Colonizing Intubated Patients , 2004, Journal of Clinical Microbiology.

[99]  K. Visick,et al.  An Exclusive Contract: Specificity in the Vibrio fischeri-Euprymna scolopes Partnership , 2000, Journal of bacteriology.

[100]  E. Greenberg,et al.  Sociomicrobiology: the connections between quorum sensing and biofilms. , 2005, Trends in microbiology.

[101]  M. Schuster,et al.  Instantaneous Within-Patient Diversity of Pseudomonas aeruginosa Quorum-Sensing Populations from Cystic Fibrosis Lung Infections , 2009, Infection and Immunity.

[102]  Rotem Sorek,et al.  Communication between viruses guides lysis-lysogeny decisions , 2016, Nature.

[103]  Nathan A. Ahlgren,et al.  Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia , 2011, Proceedings of the National Academy of Sciences.

[104]  Sara Mitri,et al.  The Evolution of Quorum Sensing as a Mechanism to Infer Kinship , 2016, PLoS Comput. Biol..

[105]  K. Foster,et al.  A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa , 2011, Molecular microbiology.

[106]  Martin Schuster,et al.  Acyl-homoserine lactone quorum sensing: from evolution to application. , 2013, Annual review of microbiology.

[107]  V. Sperandio,et al.  Interactions between the microbiota and pathogenic bacteria in the gut , 2016, Nature.

[108]  H. Goossens,et al.  In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. , 2017, Front. Cell. Infect. Microbiol..

[109]  Sam P. Brown,et al.  Conflict of interest and signal interference lead to the breakdown of honest signaling , 2015, Evolution; international journal of organic evolution.

[110]  T. Clutton‐Brock,et al.  Punishment in animal societies , 1995, Nature.

[111]  B. Raymond,et al.  The Social Biology of Quorum Sensing in a Naturalistic Host Pathogen System , 2014, Current Biology.

[112]  A. Eldar,et al.  Social Evolution Selects for Redundancy in Bacterial Quorum Sensing , 2016, PLoS biology.

[113]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[114]  Josephine R. Chandler,et al.  A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone , 2015, Journal of bacteriology.

[115]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[116]  D. Whitworth,et al.  The Myxobacterium Myxococcus xanthus Can Sense and Respond to the Quorum Signals Secreted by Potential Prey Organisms , 2017, Front. Microbiol..

[117]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[118]  C. Ubeda,et al.  Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. , 2015, Cell reports.

[119]  I. Mandic-Mulec,et al.  Private link between signal and response in Bacillus subtilis quorum sensing , 2014, Proceedings of the National Academy of Sciences.

[120]  A. Schaefer,et al.  Quorum sensing and policing of Pseudomonas aeruginosa social cheaters , 2015, Proceedings of the National Academy of Sciences.

[121]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[122]  R. Holzman,et al.  Mutations in agr do not persist in natural populations of methicillin-resistant Staphylococcus aureus. , 2010, The Journal of infectious diseases.

[123]  K. Rumbaugh,et al.  Albumin Inhibits Pseudomonas aeruginosa Quorum Sensing and Alters Polymicrobial Interactions , 2017, Infection and Immunity.

[124]  Thomas Bjarnsholt,et al.  The Pseudomonas aeruginosa PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms , 2016, mBio.

[125]  D. Greig,et al.  The Prisoner's Dilemma and polymorphism in yeast SUC genes , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[126]  Knut Drescher,et al.  Extracellular matrix structure governs invasion resistance in bacterial biofilms , 2015, The ISME Journal.

[127]  David A. D'Argenio,et al.  Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients , 2007, Molecular microbiology.

[128]  T. Wood,et al.  Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating , 2014, The ISME Journal.

[129]  H. Stone,et al.  Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion , 2017, Nature Communications.

[130]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[131]  J. Schaber,et al.  Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. , 2004, Journal of medical microbiology.

[132]  Mohammad R. Seyedsayamdost,et al.  Quorum-Sensing-Regulated Bactobolin Production by Burkholderia thailandensis E264 , 2010, Organic letters.

[133]  S. Lory,et al.  Detection of simple mutations and polymorphisms in large genomic regions. , 2001, Nucleic acids research.

[134]  Pradeep K. Singh,et al.  Cystic Fibrosis Sputum Supports Growth and Cues Key Aspects of Pseudomonas aeruginosa Physiology , 2005, Journal of bacteriology.

[135]  S. Rice,et al.  Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. , 2004, Investigative ophthalmology & visual science.

[136]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[137]  M. Schuster,et al.  Social cheating in Pseudomonas aeruginosa quorum sensing , 2007, Proceedings of the National Academy of Sciences.

[138]  Waldemar Vollmer,et al.  Type VI secretion delivers bacteriolytic effectors to target cells , 2011, Nature.

[139]  E. Greenberg,et al.  Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain , 1995, Journal of bacteriology.

[140]  M. Parsek,et al.  Quorum Sensing Protects Pseudomonas aeruginosa against Cheating by Other Species in a Laboratory Coculture Model , 2015, Journal of bacteriology.

[141]  S. Lindow,et al.  Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves , 2009, The ISME Journal.

[142]  K. Rumbaugh,et al.  Synergistic Interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an In Vitro Wound Model , 2014, Infection and Immunity.