On Influential Trends in Interactive Video Retrieval: Video Browser Showdown 2015–2017

The last decade has seen innovations that make video recording, manipulation, storage, and sharing easier than ever before, thus impacting many areas of life. New video retrieval scenarios emerged as well, which challenge the state-of-the-art video retrieval approaches. Despite recent advances in content analysis, video retrieval can still benefit from involving the human user in the loop. We present our experience with a class of interactive video retrieval scenarios and our methodology to stimulate the evolution of new interactive video retrieval approaches. More specifically, the video browser showdown evaluation campaign is thoroughly analyzed, focusing on the years 2015–2017. Evaluation scenarios, objectives, and metrics are presented, complemented by the results of the annual evaluations. The results reveal promising interactive video retrieval techniques adopted by the most successful tools and confirm assumptions about the different complexity of various types of interactive retrieval scenarios. A comparison of the interactive retrieval tools with automatic approaches (including fully automatic and manual query formulation) participating in the TRECVID 2016 ad hoc video search task is discussed. Finally, based on the results of data analysis, a substantial revision of the evaluation methodology for the following years of the video browser showdown is provided.

[1]  Chong-Wah Ngo,et al.  Towards optimal bag-of-features for object categorization and semantic video retrieval , 2007, CIVR '07.

[2]  Klaus Schöffmann,et al.  Collaborative Video Search Combining Video Retrieval with Human-Based Visual Inspection , 2016, MMM.

[3]  Tetsuji Ogawa,et al.  Waseda_Meisei at TRECVID 2018: Ad-hoc Video Search , 2018, TRECVID.

[4]  Emmanuel Dellandréa,et al.  The MediaEval 2015 Affective Impact of Movies Task , 2015, MediaEval.

[5]  Duy-Dinh Le,et al.  NII-UIT Browser: A Multimodal Video Search System , 2015, MMM.

[6]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[7]  Heiko Schuldt,et al.  Enhanced Retrieval and Browsing in the IMOTION System , 2017, MMM.

[8]  Chong-Wah Ngo,et al.  Color-Sketch Simulator: A Guide for Color-Based Visual Known-Item Search , 2017, ADMA.

[9]  Chong-Wah Ngo,et al.  Hierarchical Visualization of Video Search Results for Topic-Based Browsing , 2016, IEEE Transactions on Multimedia.

[10]  Marcel Worring,et al.  MediaTable: Interactive Categorization of Multimedia Collections , 2010, IEEE Computer Graphics and Applications.

[11]  Paul Over,et al.  Instance search retrospective with focus on TRECVID , 2017, International Journal of Multimedia Information Retrieval.

[12]  Marcel Worring,et al.  A Learned Lexicon-Driven Paradigm for Interactive Video Retrieval , 2007, IEEE Transactions on Multimedia.

[13]  Vasumathi Narayanan,et al.  A Survey of Content-Based Video Retrieval , 2008 .

[14]  Duy-Dinh Le,et al.  Semantic Extraction and Object Proposal for Video Search , 2017, MMM.

[15]  Marin Ferecatu,et al.  A Statistical Framework for Image Category Search from a Mental Picture , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Klaus Schöffmann,et al.  Collaborative Feature Maps for Interactive Video Search , 2017, MMM.

[17]  Kai Uwe Barthel,et al.  Navigating a Graph of Scenes for Exploring Large Video Collections , 2016, MMM.

[18]  Emine Yilmaz,et al.  Estimating average precision when judgments are incomplete , 2007, Knowledge and Information Systems.

[19]  Jakub Lokoc,et al.  On Effective Known Item Video Search Using Feature Signatures , 2014, ICMR.

[20]  Klaus Schöffmann,et al.  Video Interaction Tools , 2015, ACM Comput. Surv..

[21]  Thomas Seidl,et al.  Signature matching distance for content-based image retrieval , 2013, ICMR.

[22]  Shu-Ching Chen,et al.  Florida International University - University of Miami TRECVID 2018 , 2013, TRECVID.

[23]  Daniel A. Keim,et al.  What you see is what you can change: Human-centered machine learning by interactive visualization , 2017, Neurocomputing.

[24]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[25]  Rong Yan,et al.  Extreme video retrieval: joint maximization of human and computer performance , 2006, MM '06.

[26]  Maria Eskevich,et al.  The Search and Hyperlinking Task at MediaEval 2013 , 2013, MediaEval.

[27]  Werner Bailer,et al.  Comparing fact finding tasks and user survey for evaluating a video browsing tool , 2009, ACM Multimedia.

[28]  Daniel A. Keim,et al.  Knowledge Generation Model for Visual Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Thomas Seidl,et al.  On stability of signature-based similarity measures for content-based image retrieval , 2012, Multimedia Tools and Applications.

[30]  Duy-Dinh Le,et al.  The Video Browser Showdown: a live evaluation of interactive video search tools , 2013, International Journal of Multimedia Information Retrieval.

[31]  Wolfgang Hürst,et al.  A Storyboard-Based Interface for Mobile Video Browsing , 2015, MMM.

[32]  Marcel Worring,et al.  Where Is the User in Multimedia Retrieval? , 2012, IEEE Multim..

[33]  Marcel Worring,et al.  VideOlympics: Real-Time Evaluation of Multimedia Retrieval Systems , 2008, IEEE MultiMedia.

[34]  Michael G. Christel,et al.  Exploiting multiple modalities for interactive video retrieval , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[35]  Meng Wang,et al.  Utilizing Related Samples to Enhance Interactive Concept-Based Video Search , 2011, IEEE Transactions on Multimedia.

[36]  Georges Quénot,et al.  TRECVid Semantic Indexing of Video: A 6-year Retrospective , 2016 .

[37]  Yiannis Kompatsiaris,et al.  VERGE in VBS 2017 , 2017, MMM.

[38]  Klaus Schöffmann,et al.  A User-Centric Media Retrieval Competition: The Video Browser Showdown 2012-2014 , 2014, IEEE Multim..

[39]  Klaus Schöffmann,et al.  Storyboard-Based Video Browsing Using Color and Concept Indices , 2017, MMM.

[40]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[41]  Yiannis Kompatsiaris,et al.  VERGE: A Multimodal Interactive Video Search Engine , 2015, MMM.

[42]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[43]  Jakub Lokoc,et al.  Enhanced Signature-Based Video Browser , 2015, MMM.

[44]  Heiko Schuldt,et al.  iAutoMotion - an Autonomous Content-Based Video Retrieval Engine , 2016, MMM.

[45]  Chong-Wah Ngo,et al.  Concept-Based Interactive Search System , 2017, MMM.

[46]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[47]  Svetha Venkatesh,et al.  Towards a Video Browser for the Digital Native , 2012, 2012 IEEE International Conference on Multimedia and Expo Workshops.

[48]  Bernard Mérialdo,et al.  EURECOM at TRECVID 2017: The Adhoc Video Search , 2017, TRECVID.

[49]  Heiko Schuldt,et al.  IMOTION - A Content-Based Video Retrieval Engine , 2015, MMM.

[50]  Alan F. Smeaton,et al.  Design, implementation and testing of an interactive video retrieval system , 2003, MIR '03.

[51]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Werner Bailer,et al.  Video browser showdown , 2012, ACMMR.

[53]  Meng Wang,et al.  VisionGo: Towards video retrieval with joint exploration of human and computer , 2011, Inf. Sci..

[54]  Heiko Schuldt,et al.  ADAMpro: Database Support for Big Multimedia Retrieval , 2016, Datenbank-Spektrum.

[55]  Klaus Schöffmann,et al.  The video explorer: a tool for navigation and searching within a single video based on fast content analysis , 2010, MMSys '10.

[56]  Jakub Lokoc,et al.  Signature-Based Video Browser , 2014, MMM.

[57]  Huanbo Luan,et al.  Content-based video retrieval: Three example systems from TRECVid , 2008 .

[58]  Yiannis Kompatsiaris,et al.  VERGE: A Multimodal Interactive Search Engine for Video Browsing and Retrieval , 2016, MMM.

[59]  Marcel Worring,et al.  Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..

[60]  Rong Yan,et al.  Merging storyboard strategies and automatic retrieval for improving interactive video search , 2007, CIVR '07.

[61]  Georges Quénot,et al.  TRECVID 2017: Evaluating Ad-hoc and Instance Video Search, Events Detection, Video Captioning and Hyperlinking , 2017, TRECVID.

[62]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[63]  Heiko Schuldt,et al.  IMOTION - Searching for Video Sequences Using Multi-Shot Sketch Queries , 2016, MMM.

[64]  Mohammad Soleymani,et al.  The Benchmarking Initiative for Multimedia Evaluation: MediaEval 2016 , 2017, IEEE Multim..

[65]  Li Li,et al.  A Survey on Visual Content-Based Video Indexing and Retrieval , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[66]  Dumitru Erhan,et al.  Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Marcel Worring,et al.  Browsing Video Along Multiple Threads , 2010, IEEE Transactions on Multimedia.

[68]  Klaus Schöffmann,et al.  3-D Interfaces to Improve the Performance of Visual Known-Item Search , 2014, IEEE Transactions on Multimedia.

[69]  Jakub Lokoc,et al.  Multi-sketch Semantic Video Browser , 2016, MMM.

[70]  Klaus Schöffmann,et al.  Interactive Video Search , 2015, ACM Multimedia.