Reconstructing the thermal structure of the upper ocean: Insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean

[1] Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ∼50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ∼75 m, 75–100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Nino-Southern Oscillation, and the Indian Ocean Dipole Mode.

[1]  E. C. Farmer,et al.  On the fidelity of shell-derived δ18Oseawater estimates , 2010 .

[2]  D. Hebbeln,et al.  Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean , 2010 .

[3]  K. Richards,et al.  Seasonal sea surface temperature variability in the Indonesian Seas , 2009 .

[4]  S. Mulitza,et al.  Stable isotopes of planktonic foraminifera from tropical Atlantic/Caribbean core-tops: Implications for reconstructing upper ocean stratification , 2009 .

[5]  T. Rixen,et al.  Low‐latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: A sediment trap study , 2009 .

[6]  C. Rühlemann,et al.  Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300,000 years , 2009 .

[7]  R. Tiedemann,et al.  Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ 18 O-calcification temperatures: Paleothermometry for the upper water column , 2009 .

[8]  J. Duplessy,et al.  Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction , 2008, Paleoceanography.

[9]  P. deMenocal,et al.  Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry , 2008 .

[10]  Yan Du,et al.  Interannual Variability of Sea Surface Temperature off Java and Sumatra in a Global GCM , 2008 .

[11]  Hideaki Hase,et al.  Oceanic precondition and evolution of the 2006 Indian Ocean dipole , 2008 .

[12]  T. Jennerjahn,et al.  Modern environmental conditions recorded in surface sediment samples off W and SW Indonesia: planktonic foraminifera and biogenic compounds analyses , 2007 .

[13]  E. C. Farmer,et al.  Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens , 2007 .

[14]  P. Webster,et al.  Effects of the seasonal cycle on the development and termination of the Indian Ocean Zonal Dipole Mode , 2006 .

[15]  M. Conte,et al.  Global temperature calibration of the alkenone unsaturation index (UK′37) in surface waters and comparison with surface sediments , 2006 .

[16]  A. Gordon Oceanography of the Indonesian Seas and Their Throughflow , 2005 .

[17]  John Marra,et al.  Effect of the 1997/98 El Niño on Chlorophyll a Variability Along the Southern Coasts of Java and Sumatra , 2005 .

[18]  Harry H. Hendon,et al.  Indian Ocean Variability and Its Association with ENSO in a Global Coupled Model , 2005 .

[19]  R. Thunell,et al.  Calibration of the planktonic foraminiferal Mg/Ca paleothermometer: Sediment trap results from the Guaymas Basin, Gulf of California , 2005 .

[20]  R. E. M. Rickaby,et al.  Cool La Niña During the Warmth of the Pliocene? , 2005, Science.

[21]  G. Meyers,et al.  Seasonal Characteristics of Circulation in the Southeastern Tropical Indian Ocean , 2004 .

[22]  H. Kawahata,et al.  Vertical distribution of living planktonic foraminifera in the seas around Japan , 2004 .

[23]  D. Field Variability in vertical distributions of planktonic foraminifera in the California Current: Relationships to vertical ocean structure , 2004 .

[24]  G. Wefer,et al.  Temperature:δ18O relationships of planktonic foraminifera collected from surface waters , 2003 .

[25]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[26]  Henry Elderfield,et al.  Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series , 2003 .

[27]  M. Kučera,et al.  Seasonal distribution of genetic types of planktonic foraminifer morphospecies in the Santa Barbara Channel and its paleoceanographic implications , 2003 .

[28]  D. Lea,et al.  Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr , 2003 .

[29]  F. Peeters,et al.  The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NW Arabian Sea , 2002 .

[30]  H. Kayanne,et al.  Salinity records for the 1997–98 El Niño from Western Pacific corals , 2002 .

[31]  D. Lea,et al.  Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation , 2002 .

[32]  G. Schmidt,et al.  Global calibration of ecological models for planktic foraminifera from coretop carbonate oxygen-18 , 2002 .

[33]  Quanan Zheng,et al.  Upwelling along the coasts of Java and Sumatra and its relation to ENSO , 2001 .

[34]  Luejiang Wang Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle , 2000 .

[35]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[36]  G. P. Lohmann,et al.  Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O/16O of seawater , 2000 .

[37]  A. Poignant Révision des espèces de foraminifères signalées par d'orbigny en aquitaine (S.O. France) dans le « tableau méthodique de la classe des céphalopodes (1826) , 1998 .

[38]  Jelle Bijma,et al.  Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations , 1998 .

[39]  D. Lea,et al.  Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions , 1996 .

[40]  A. Mix,et al.  Environmental control of living symbiotic and asymbiotic foraminifera of the California Current , 1995 .

[41]  R. Thunell,et al.  Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions; sediment trap results from San Pedro Basin, Southern California Bight , 1991 .

[42]  J. Duplessy,et al.  Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and Recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle , 1985 .

[43]  P. Wiebe,et al.  Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin , 1982, Nature.

[44]  P. Wiebe,et al.  Foraminifera and Chlorophyll Maximum: Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance , 1980, Science.

[45]  P. Wiebe,et al.  Vertical Distribution and Isotopic Composition of Living Planktonic Foraminifera in the Western North Atlantic , 1980, Science.

[46]  J. Galloway,et al.  Pleistocene Foraminifera from the Lomita quarry, Palos Verdes Hills, California , 1927 .

[47]  E. C. Farmer,et al.  On the fi delity of shell-derived δ 18 Oseawater estimates , 2010 .

[48]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[49]  D. Hebbeln Report and preliminary results of RV Sonne Cruise SO-184, Pabesia, Durban (South Africa) - Cilacap (Indonesia) - Darwin (Australia), July 8th - September 13th, 2005 , 2006 .

[50]  C. Buck,et al.  Marine04 Marine Radiocarbon Age Calibration, 0–26 Cal Kyr Bp , 2004, Radiocarbon.

[51]  Caitlin E. Buck,et al.  Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP , 2004, Radiocarbon.

[52]  Y. Masumoto,et al.  Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole , 2002 .

[53]  H. Niebler,et al.  Oxygen Isotope Values of Planktic Foraminifera: A Tool for the Reconstruction of Surface Water Stratification , 1999 .

[54]  R. Harris,et al.  Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica , 1998 .

[55]  N. Shackleton Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial , 1974 .