Molecular Source Tracking and Molecular Subtyping

Molecular subtyping can be used to study the population structure of a particular bacterial species, to determine the possible evolution of the subject microorganism, or to study the molecular epidemiology of a microbe. The types of methods used for subtyping and the approaches to data analysis and interpretation may vary greatly with the reason for specific subtyping. This chapter focuses almost entirely on subtyping for molecular epidemiology. Molecular epidemiology can be applied to identifying the source of a particular outbreak or to a broader understanding of the role of certain foods or processes in outbreak-related or sporadic infections. Perhaps the most easily appreciated reason for molecular subtyping is to facilitate the identification and investigation of foodborne disease outbreaks. Although the focus of this chapter is on molecular methods, it is important to consider them in the context of earlier phenotypic methods such as serotyping, phage typing, biotyping, and antimicrobial susceptibility typing. Most of these phenotypic methods have long and successful histories of use in subtyping for the same purposes for which molecular methods are now used. Although molecular methods typically provide greater strain discrimination than phenotypic methods, this is not always the case, and it is only one reason why molecular methods are generally preferred. In recent years, the main focus of subtyping method development has been on DNA sequence-based methods. Sequence-based approaches to subtyping of bacteria, such as multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA), are already being widely implemented in the surveillance of foodborne infections.

[1]  Southern Em Analysis of restriction-fragment patterns from complex deoxyribonucleic acid species. , 1979 .

[2]  E. Southern Analysis of restriction-fragment patterns from complex deoxyribonucleic acid species. , 1979, Biochemical Society symposium.

[3]  J. S. Schrader,et al.  Salmonellosis associated with marijuana: a multistate outbreak traced by plasmid fingerprinting. , 1982, The New England journal of medicine.

[4]  C R Cantor,et al.  New techniques for purifying large DNAs and studying their properties and packaging. , 1983, Cold Spring Harbor symposia on quantitative biology.

[5]  Harry B. McGee,et al.  Hemorrhagic colitis associated with a rare Escherichia coli serotype , 1983 .

[6]  S. Holmberg,et al.  Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing Salmonella typhimurium isolates from outbreaks , 1984, Journal of clinical microbiology.

[7]  J. Feeley,et al.  Plasmid characterization of Salmonella typhimurium transmitted from animals to humans , 1985, Journal of clinical microbiology.

[8]  F. Grimont,et al.  Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. , 1986, Annales de l'Institut Pasteur. Microbiology.

[9]  R. W. Davis,et al.  Separation of large DNA molecules by contour-clamped homogeneous electric fields. , 1986, Science.

[10]  M. Olson,et al.  Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. , 1986, Science.

[11]  T. Whittam,et al.  Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics , 1986, Applied and environmental microbiology.

[12]  D. Patterson,et al.  Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis , 1986, Somatic cell and molecular genetics.

[13]  T. Edlind,et al.  A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. , 1988, The Journal of infectious diseases.

[14]  M. Altwegg,et al.  Ribosomal RNA gene restriction patterns provide increased sensitivity for typing Salmonella typhi strains. , 1989, The Journal of infectious diseases.

[15]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[16]  J. Welsh,et al.  Fingerprinting genomes using PCR with arbitrary primers. , 1990, Nucleic acids research.

[17]  B Rowe,et al.  International increase in Salmonella enteritidis: A new pandemic? , 1990, Epidemiology and Infection.

[18]  D. Taylor,et al.  Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. , 1991, The Journal of infectious diseases.

[19]  J. Lupski,et al.  Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. , 1991, Nucleic acids research.

[20]  J. Wells,et al.  The use of plasmid profiles and nucleic acid probes in epidemiologic investigations of foodborne, diarrheal diseases. , 1991, International journal of food microbiology.

[21]  I. Wachsmuth,et al.  Molecular epidemiology of Yersinia enterocolitica O:3 infections: use of chromosomal DNA restriction fragment length polymorphisms of rRNA genes , 1991, Journal of clinical microbiology.

[22]  J. Kostman,et al.  Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping , 1992, Journal of clinical microbiology.

[23]  G. Scoles,et al.  Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. , 1993, Molecular and cellular probes.

[24]  D. Ellsworth,et al.  Artifactual variation in randomly amplified polymorphic DNA banding patterns. , 1993, BioTechniques.

[25]  E. Wakeland,et al.  Concentration of primer and template qualitatively affects products in random-amplified polymorphic DNA PCR. , 1993, BioTechniques.

[26]  I. Nachamkin,et al.  Flagellin gene typing of Campylobacter jejuni by restriction fragment length polymorphism analysis , 1993, Journal of clinical microbiology.

[27]  B. Schierwater,et al.  Different thermostable DNA polymerases may amplify different RAPD products. , 1993, Nucleic acids research.

[28]  P. Grimont,et al.  Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. , 1993, Research in microbiology.

[29]  J. H. Green,et al.  Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by using pulsed-field gel electrophoresis and phage typing , 1994, Journal of clinical microbiology.

[30]  M. Micheli,et al.  Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. , 1994, Nucleic acids research.

[31]  J. Wells,et al.  A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. , 1994, JAMA.

[32]  T. Yokochi,et al.  Discrimination by means of pulsed-field gel electrophoresis between strains of Campylobacter jejuni Lior type 4 derived from sporadic cases and from outbreaks of infection. , 1994, The Journal of infection.

[33]  I. Fisher Salm-Net: a network for human salmonella surveillance in Europe. , 1995, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[34]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[35]  J. Bruce Automated system rapidly identifies and characterizes microorganisms in food , 1996 .

[36]  P. Fields,et al.  Discrimination of Campylobacter jejuni isolates by fla gene sequencing , 1997, Journal of clinical microbiology.

[37]  P. Carter,et al.  Evidence for recombination in the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme , 1997, Journal of clinical microbiology.

[38]  K. Portier,et al.  Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay , 1997, Applied and environmental microbiology.

[39]  T. Wassenaar,et al.  Evidence of Genomic Instability inCampylobacter jejuni Isolated from Poultry , 1998, Applied and Environmental Microbiology.

[40]  C. Penn,et al.  Comparison of ribotyping and arbitrarily primed PCR for molecular typing of Salmonella enterica and relationships between strains on the basis of these molecular markers , 1998, Journal of applied microbiology.

[41]  E. Threlfall,et al.  Genotypic Characterization of Salmonella enteritidis Phage Types by Plasmid Analysis, Ribotyping, and Pulsed-Field Gel Electrophoresis , 1998, Journal of Clinical Microbiology.

[42]  J. Wells,et al.  Outbreak of Salmonella serotype Hartford infections associated with unpasteurized orange juice. , 1998, JAMA.

[43]  Alex van Belkum,et al.  Short-Sequence DNA Repeats in Prokaryotic Genomes , 1998, Microbiology and Molecular Biology Reviews.

[44]  A. van Belkum Short sequence repeats in microbial pathogenesis and evolution , 1999, Cellular and molecular life sciences : CMLS.

[45]  E. Yeramian,et al.  Tandem repeats in complete bacterial genome sequences: sequence and structural analyses for comparative studies. , 1999, Research in microbiology.

[46]  P. Savelkoul,et al.  Amplified-Fragment Length Polymorphism Analysis: the State of an Art , 1999, Journal of Clinical Microbiology.

[47]  I. Fisher The Enter-net international surveillance network - how it works. , 1999, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[48]  L. Price,et al.  Multiple-Locus Variable-Number Tandem Repeat Analysis Reveals Genetic Relationships within Bacillus anthracis , 2000, Journal of bacteriology.

[49]  S. Kresovich,et al.  Genomic typing of Escherichia coli O157:H7 by semi-automated fluorescent AFLP analysis. , 2000, Microbes and infection.

[50]  B. Duim,et al.  Computer-Assisted Analysis and Epidemiological Value of Genotyping Methods for Campylobacter jejuni andCampylobacter coli , 2000, Journal of Clinical Microbiology.

[51]  E. Heir,et al.  Comparative Fingerprinting Analysis ofCampylobacter jejuni subsp. jejuni Strains by Amplified-Fragment Length Polymorphism Genotyping , 2000, Journal of Clinical Microbiology.

[52]  E. Heir,et al.  Fluorescent Amplified-Fragment Length Polymorphism Genotyping of Salmonella enterica subsp. enterica Serovars and Comparison with Pulsed-Field Gel Electrophoresis Typing , 2000, Journal of Clinical Microbiology.

[53]  F. Denoeud,et al.  A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis , 2001, BMC Microbiology.

[54]  B. Swaminathan,et al.  PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. , 2001, Emerging infectious diseases.

[55]  B. Duim,et al.  Evidence for a Genetically Stable Strain ofCampylobacter jejuni , 2001, Applied and Environmental Microbiology.

[56]  M. Maiden,et al.  Multilocus Sequence Typing System forCampylobacter jejuni , 2001, Journal of Clinical Microbiology.

[57]  J B Bender,et al.  Use of molecular subtyping in surveillance for Salmonella enterica serotype typhimurium. , 2001, The New England journal of medicine.

[58]  Paul Keim,et al.  Francisella tularensis Strain Typing Using Multiple-Locus, Variable-Number Tandem Repeat Analysis , 2001, Journal of Clinical Microbiology.

[59]  J. Besser,et al.  Limitations of pulsed-field gel electrophoresis for the routine surveillance of Campylobacter infections. , 2001, The Journal of infectious diseases.

[60]  M. Wiedmann,et al.  Automated Ribotyping Using Different Enzymes To Improve Discrimination of Listeria monocytogenes Isolates, with a Particular Focus on Serotype 4b Strains , 2001, Journal of Clinical Microbiology.

[61]  O. Colin Stine,et al.  Multilocus Sequence Typing for Characterization of Clinical and Environmental Salmonella Strains , 2002, Journal of Clinical Microbiology.

[62]  Edward A Graviss,et al.  Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. , 2002, Genetics.

[63]  Roger I Glass,et al.  Epidemiologic and molecular trends of "Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. , 2002, The Journal of infectious diseases.

[64]  B. Duim,et al.  Generation of Campylobacter jejuni genetic diversity in vivo , 2002, Molecular microbiology.

[65]  Mihai Pop,et al.  Comparative Genome Sequencing for Discovery of Novel Polymorphisms in Bacillus anthracis , 2002, Science.

[66]  D. Dressman,et al.  Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. W. van der Woude,et al.  Slipped-Strand Mispairing Can Function as a Phase Variation Mechanism in Escherichia coli , 2003, Journal of bacteriology.

[68]  J. Morris,et al.  Multilocus Sequence Typing Reveals a Lack of Diversity among Escherichia coli O157:H7 Isolates That Are Distinct by Pulsed-Field Gel Electrophoresis , 2003, Journal of Clinical Microbiology.

[69]  Rob J. L. Willems,et al.  Comparative Genotyping of Campylobacter jejuni by Amplified Fragment Length Polymorphism, Multilocus Sequence Typing, and Short Repeat Sequencing: Strain Diversity, Host Range, and Recombination , 2003, Journal of Clinical Microbiology.

[70]  Martin Wiedmann,et al.  Molecular Subtyping to Detect Human Listeriosis Clusters , 2003, Emerging infectious diseases.

[71]  D. Boxrud,et al.  Multilocus Variable-Number Tandem Repeat AnalysisDistinguishes Outbreak and Sporadic Escherichia coli O157:H7Isolates , 2003, Journal of Clinical Microbiology.

[72]  B. Swaminathan,et al.  Utility of Multilocus Sequence Typing as an Epidemiological Tool for Investigation of Outbreaks of Gastroenteritis Caused by Campylobacter jejuni , 2003, Journal of Clinical Microbiology.

[73]  L R Ward,et al.  A national outbreak of multi-resistant Salmonella enterica serovar Typhimurium definitive phage type (DT) 104 associated with consumption of lettuce , 2003, Epidemiology and Infection.

[74]  DNA fingerprinting of Shiga-toxin producing Escherichia coli O157 based on Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA) , 2003, Annals of Clinical Microbiology and Antimicrobials.

[75]  G. Kapperud,et al.  Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. , 2004, Journal of microbiological methods.

[76]  P. McDermott,et al.  Evaluation of molecular typing methods for Escherichia coli O157:H7 isolates from cattle, food, and humans. , 2004, Journal of food protection.

[77]  A. Mellmann,et al.  Sequence-Based Typing of flaB Is a More Stable Screening Tool Than Typing of flaA for Monitoring of Campylobacter Populations , 2004, Journal of Clinical Microbiology.

[78]  F. Denoeud,et al.  Variable Number of Tandem Repeats in Salmonella enterica subsp. enterica for Typing Purposes , 2004, Journal of Clinical Microbiology.

[79]  S. Lukinmaa,et al.  Diversity of Listeria monocytogenes isolates of human and food origin studied by serotyping, automated ribotyping and pulsed-field gel electrophoresis. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[80]  T. Cebula,et al.  Single-Nucleotide Polymorphism Mutation Spectra and Resistance to Quinolones in Salmonella enterica Serovar Enteritidis with a Mutator Phenotype , 2004, Antimicrobial Agents and Chemotherapy.

[81]  G. Kapperud,et al.  Multiple-Locus Variable-Number Tandem-Repeats Analysis of Escherichia coli O157 using PCR multiplexing and multi-colored capillary electrophoresis. , 2004, Journal of microbiological methods.

[82]  L. Harrison,et al.  Genotyping Primers for Fully Automated Multilocus Variable-Number Tandem Repeat Analysis of Escherichia coli O157:H7 , 2004, Journal of Clinical Microbiology.

[83]  C. Buchrieser,et al.  New Aspects Regarding Evolution and Virulence of Listeria monocytogenes Revealed by Comparative Genomics and DNA Arrays , 2004, Infection and Immunity.

[84]  D. Call,et al.  Selective Discrimination of Listeria monocytogenes Epidemic Strains by a Mixed-Genome DNA Microarray Compared to Discrimination by Pulsed-Field Gel Electrophoresis, Ribotyping, and Multilocus Sequence Typing , 2004, Journal of Clinical Microbiology.

[85]  J. Morris,et al.  Comparative Analysis of Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis for Characterizing Listeria monocytogenes Strains Isolated from Environmental and Clinical Sources , 2004, Journal of Clinical Microbiology.

[86]  L. Gram,et al.  High-resolution genotyping of Listeria monocytogenes by fluorescent amplified fragment length polymorphism analysis compared to pulsed-field gel electrophoresis, random amplified polymorphic DNA analysis, ribotyping, and PCR-restriction fragment length polymorphism analysis. , 2004, Journal of food protection.

[87]  A. Sjöstedt,et al.  Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis , 2004, Journal of bacteriology.

[88]  Wei Zhang,et al.  Multi-Virulence-Locus Sequence Typing of Listeria monocytogenes , 2004, Applied and Environmental Microbiology.

[89]  Venugopal Thiruvenkataswamy,et al.  Identification and interrogation of highly informative single nucleotide polymorphism sets defined by bacterial multilocus sequence typing databases. , 2004, Journal of medical microbiology.

[90]  K. Liljebjelke,et al.  Vertical and horizontal transmission of salmonella within integrated broiler production system. , 2005, Foodborne pathogens and disease.

[91]  C. Logue,et al.  Multilocus Sequence Typing Lacks the Discriminatory Ability of Pulsed-Field Gel Electrophoresis for Typing Salmonella enterica Serovar Typhimurium , 2005, Journal of Clinical Microbiology.

[92]  J. Lupski,et al.  Microbial DNA Typing by Automated Repetitive-Sequence-Based PCR , 2005, Journal of Clinical Microbiology.

[93]  P. McDermott,et al.  A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. , 2005, Molecular and cellular probes.

[94]  W. Rabsch,et al.  Pilot Study To Evaluate Microarray Hybridization as a Tool for Salmonella enterica Serovar Typhimurium StrainDifferentiation , 2005, Journal of Clinical Microbiology.

[95]  Hjörleifur Einarsson,et al.  Tracing Listeria monocytogenes isolates from cold-smoked salmon and its processing environment in Iceland using pulsed-field gel electrophoresis. , 2005, International journal of food microbiology.

[96]  E. Boyd,et al.  Genomic Comparisons of Salmonella enterica Serovar Dublin, Agona, and Typhimurium Strains Recently Isolated from Milk Filters and Bovine Samples from Ireland, Using a Salmonella Microarray , 2005, Applied and Environmental Microbiology.

[97]  J. Morris,et al.  Multilocus Sequence Typing versus Pulsed-Field Gel Electrophoresis for Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates , 2005, Journal of Clinical Microbiology.

[98]  E. Borch,et al.  Genetic profiling of Campylobacter jejuni strains from humans infected in Sweden or in Thailand, and from healthy Swedish chickens, studied by pulsed-field gel electrophoresis (PFGE) , 2005, Scandinavian journal of infectious diseases.

[99]  Shouxiong Huang,et al.  Molecular typing of Campylobacter strains using the cmp gene encoding the major outer membrane protein. , 2005, Foodborne pathogens and disease.

[100]  Amy J. Vogler,et al.  Identifying Sources of Human Exposure to Plague , 2005, Journal of Clinical Microbiology.

[101]  M. Wiedmann,et al.  DNA Sequence-Based Subtyping and Evolutionary Analysis of Selected Salmonella enterica Serotypes , 2005, Journal of Clinical Microbiology.

[102]  Gehua Wang,et al.  Use of the Oxford Multilocus Sequence Typing Protocol and Sequencing of the Flagellin Short Variable Region To Characterize Isolates from a Large Outbreak of Waterborne Campylobacter sp. Strains in Walkerton, Ontario, Canada , 2005, Journal of Clinical Microbiology.

[103]  I. Ross,et al.  Discrimination within Phenotypically Closely Related Definitive Types of Salmonella enterica Serovar Typhimurium by the Multiple Amplification of Phage Locus Typing Technique , 2005, Journal of Clinical Microbiology.

[104]  D. Stenger,et al.  Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[105]  E. Nielsen,et al.  Genotyping of Campylobacter jejuni strains from Danish broiler chickens by restriction fragment length polymorphism of the LPS gene cluster , 2005, Journal of applied microbiology.

[106]  Jason Hinds,et al.  Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  S. On,et al.  Identification and Molecular Epidemiology of Campylobacter coli Isolates from Human Gastroenteritis, Food, and Animal Sources by Amplified Fragment Length Polymorphism Analysis and Penner Serotyping , 2005, Applied and Environmental Microbiology.

[108]  Wei Zhang,et al.  Multiplex PCR assay simplifies serotyping and sequence typing of Listeria monocytogenes associated with human outbreaks. , 2005, Journal of food protection.

[109]  E. Topp,et al.  Identifying Host Sources of Fecal Pollution: Diversity of Escherichia coli in Confined Dairy and Swine Production Systems , 2005, Applied and Environmental Microbiology.

[110]  D. Sandvang,et al.  Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. , 2005, Journal of microbiological methods.

[111]  Y. Rogers,et al.  Genomics: Massively parallel sequencing , 2005, Nature.

[112]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[113]  J. Glenn Morris,et al.  Multilocus Sequence Typing for Studying Genetic Relationships among Yersinia Species , 2005, Journal of Clinical Microbiology.

[114]  Paul Mead,et al.  Microbiological Aspects of the Investigation That Traced the 1998 Outbreak of Listeriosis in the United States to Contaminated Hot Dogs and Establishment of Molecular Subtyping-Based Surveillance for Listeria monocytogenes in the PulseNet Network , 2005, Journal of Clinical Microbiology.

[115]  M. Metzker Emerging technologies in DNA sequencing. , 2005, Genome research.

[116]  Shiao Y Wang,et al.  Methods To Increase Fidelity of Repetitive Extragenic Palindromic PCR Fingerprint-Based Bacterial Source Tracking Efforts , 2005, Applied and Environmental Microbiology.

[117]  Bjørn‐Arne Lindstedt,et al.  Multiple‐locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria , 2005, Electrophoresis.

[118]  P. Patel,et al.  Molecular epidemiology of foodborne hepatitis a outbreaks in the United States, 2003. , 2005, The Journal of infectious diseases.

[119]  R. Arbeit,et al.  Role of Real-Time Molecular Typing in the Surveillance of Campylobacter Enteritis and Comparison of Pulsed-Field Gel Electrophoresis Profiles from Chicken and Human Isolates , 2005, Journal of Clinical Microbiology.

[120]  A. Fox,et al.  Real-time single-nucleotide polymorphism profiling using Taqman technology for rapid recognition of Campylobacter jejuni clonal complexes. , 2005, Journal of medical microbiology.

[121]  P. Keim,et al.  Highly diverse variable number tandem repeat loci in the E. coli O157:H7 and O55:H7 genomes for high‐resolution molecular typing , 2005, Journal of applied microbiology.

[122]  E. Denamur,et al.  Single-Nucleotide Polymorphism Phylotyping of Escherichia coli , 2005, Applied and Environmental Microbiology.

[123]  Peter Gerner-Smidt,et al.  Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. , 2006, Foodborne pathogens and disease.

[124]  J. Besser,et al.  Comparison of Multiple-Locus Variable-Number Tandem Repeat Analysis, Pulsed-Field Gel Electrophoresis, and Phage Typing for Subtype Analysis of Salmonella enterica Serotype Enteritidis , 2006, Journal of Clinical Microbiology.

[125]  Adaptation of Multilocus Sequencing for Studying Variation Within a Major Clone: Evolutionary Relationships of Salmonella enterica Serovar Typhimurium , 2006, Genetics.

[126]  A. Tomkinson,et al.  DNA ligases: structure, reaction mechanism, and function. , 2006, Chemical reviews.

[127]  S. Porwollik,et al.  DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? , 2006, FEMS immunology and medical microbiology.

[128]  M. Borucki,et al.  A Single-Nucleotide-Polymorphism-Based Multilocus Genotyping Assay for Subtyping Lineage I Isolates of Listeria monocytogenes , 2006, Applied and Environmental Microbiology.

[129]  B. Goldman,et al.  Optical mapping as a routine tool for bacterial genome sequence finishing , 2007, BMC Genomics.

[130]  T. Whittam,et al.  Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. , 2006, Genome research.

[131]  M. Fedurco,et al.  BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies , 2006, Nucleic acids research.

[132]  B. Swaminathan,et al.  Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). , 2006, Foodborne pathogens and disease.

[133]  B. Swaminathan,et al.  Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. , 2006, Foodborne pathogens and disease.

[134]  B. Swaminathan,et al.  PulseNet USA: a five-year update. , 2006, Foodborne pathogens and disease.

[135]  M. McClelland,et al.  DNA microarray detection of antimicrobial resistance genes in diverse bacteria. , 2006, International journal of antimicrobial agents.

[136]  S. Kathariou,et al.  Identification of host-associated alleles by multilocus sequence typing of Campylobacter coli strains from food animals. , 2006, Microbiology.

[137]  G. Kapperud,et al.  Study of polymorphic variable-number of tandem repeats loci in the ECOR collection and in a set of pathogenic Escherichia coli and Shigella isolates for use in a genotyping assay. , 2007, Journal of microbiological methods.

[138]  M. Torpdahl,et al.  Harmonization of the multiple‐locus variable‐number tandem repeat analysis method between Denmark and Norway for typing Salmonella Typhimurium isolates and closer examination of the VNTR loci , 2007, Journal of applied microbiology.

[139]  P. Whyte,et al.  Development and application of Multiple-Locus Variable number of tandem repeat Analysis (MLVA) to subtype a collection of Listeria monocytogenes. , 2007, International journal of food microbiology.

[140]  P. Fields,et al.  Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. , 2007, Journal of microbiological methods.

[141]  P. Fields,et al.  Multiplex, Bead-Based Suspension Array for Molecular Determination of Common Salmonella Serogroups , 2007, Journal of Clinical Microbiology.

[142]  Scott A Jackson,et al.  Interrogating genomic diversity of E. coli O157:H7 using DNA tiling arrays. , 2007, Forensic science international.

[143]  Alison J. Cody,et al.  Extended Sequence Typing of Campylobacter spp., United Kingdom , 2008, Emerging infectious diseases.

[144]  L. Wolf,et al.  Multiple-Locus Variable-Number Tandem-Repeat Analysis as a Tool for Subtyping Listeria monocytogenes Strains , 2008, Journal of Clinical Microbiology.

[145]  Steven M. Johnson,et al.  A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. , 2008, Genome research.

[146]  B. Malorny,et al.  Multi-locus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis , 2008, BMC Microbiology.

[147]  S. Brisse,et al.  A New Perspective on Listeria monocytogenes Evolution , 2008, PLoS pathogens.

[148]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[149]  M. Biggerstaff,et al.  Packed with Salmonella--investigation of an international outbreak of Salmonella Senftenberg infection linked to contamination of prepacked basil in 2007. , 2008, Foodborne pathogens and disease.

[150]  T. Whittam,et al.  Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks , 2008, Proceedings of the National Academy of Sciences.

[151]  J. Bielawski,et al.  Multilocus Genotyping Assays for Single Nucleotide Polymorphism-Based Subtyping of Listeria monocytogenes Isolates , 2008, Applied and Environmental Microbiology.

[152]  B. Seal,et al.  Predicting Salmonella enterica serotypes by repetitive sequence-based PCR. , 2009, Journal of microbiological methods.

[153]  C. Chang,et al.  Microarray analysis of antimicrobial resistance genes in Salmonella enterica from preharvest poultry environment , 2009, Journal of applied microbiology.

[154]  J. Frye,et al.  High-Throughput Molecular Determination of Salmonella enterica Serovars by Use of Multiplex PCR and Capillary Electrophoresis Analysis , 2009, Journal of Clinical Microbiology.

[155]  S. Löfdahl,et al.  An outbreak of Salmonella Typhimurium infections in Denmark, Norway and Sweden, 2008. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[156]  Scott Nowicki,et al.  Multistate outbreak of Salmonella infections associated with peanut butter and peanut butter-containing products--United States, 2008-2009. , 2009, MMWR. Morbidity and mortality weekly report.

[157]  B. Gilpin,et al.  Comparison of PCR Binary Typing (P-BIT), a New Approach to Epidemiological Subtyping of Campylobacter jejuni, with Serotyping, Pulsed-Field Gel Electrophoresis, and Multilocus Sequence Typing Methods , 2009, Applied and Environmental Microbiology.

[158]  J. Corander,et al.  Multilocus sequence types of Finnish bovine Campylobacter jejuni isolates and their attribution to human infections , 2010, BMC Microbiology.

[159]  Alison J. Cody,et al.  Host Association of Campylobacter Genotypes Transcends Geographic Variation , 2010, Applied and Environmental Microbiology.

[160]  J. Frye,et al.  An oligonucleotide microarray to characterize multidrug resistant plasmids. , 2010, Journal of microbiological methods.

[161]  Martin C. J. Maiden,et al.  BIGSdb: Scalable analysis of bacterial genome variation at the population level , 2010, BMC Bioinformatics.

[162]  S. Bonovas,et al.  A waterborne Campylobacter jejuni outbreak on a Greek island , 2010, Epidemiology and Infection.

[163]  A. Brisabois,et al.  Semi-automated repetitive-sequence-based polymerase chain reaction compared to pulsed-field gel electrophoresis for Listeria monocytogenes subtyping. , 2010, Foodborne pathogens and disease.

[164]  J. B. Turpin,et al.  Development of a DNA microarray to detect antimicrobial resistance genes identified in the National Center for Biotechnology Information database. , 2010, Microbial drug resistance.

[165]  E. J. Threlfall,et al.  Comparison of a semi-automated rep-PCR system and multilocus sequence typing for differentiation of Salmonella enterica isolates. , 2010, Journal of microbiological methods.

[166]  Wen Zou,et al.  Evaluation of Pulsed-Field Gel Electrophoresis Profiles for Identification of Salmonella Serotypes , 2010, Journal of Clinical Microbiology.

[167]  A. M. Sanso,et al.  Genetic diversity of O157:H7 and non-O157 verocytotoxigenic Escherichia coli from Argentina inferred from multiple-locus variable-number tandem repeat analysis (MLVA). , 2010, International journal of medical microbiology : IJMM.

[168]  S. Salzberg,et al.  Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification , 2010, BMC Genomics.

[169]  T. Ward,et al.  A Targeted Multilocus Genotyping Assay for Lineage, Serogroup, and Epidemic Clone Typing of Listeria monocytogenes , 2010, Applied and Environmental Microbiology.

[170]  P. Fields,et al.  Molecular Determination of H Antigens of Salmonella by Use of a Microsphere-Based Liquid Array , 2010, Journal of Clinical Microbiology.

[171]  Characterization of Escherichia coli O157:H7 in New Zealand using multiple-locus variable-number tandem-repeat analysis , 2010, Epidemiology and Infection.

[172]  Errol Strain,et al.  Identification of a salmonellosis outbreak by means of molecular sequencing. , 2011, The New England journal of medicine.

[173]  Eduardo N. Taboada,et al.  Development and Validation of a Comparative Genomic Fingerprinting Method for High-Resolution Genotyping of Campylobacter jejuni , 2011, Journal of Clinical Microbiology.

[174]  S. Rasmussen,et al.  Identification of acquired antimicrobial resistance genes , 2012, The Journal of antimicrobial chemotherapy.

[175]  Zhemin Zhou,et al.  Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica , 2012, PLoS pathogens.

[176]  Ole Lund,et al.  Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria , 2012, Journal of Clinical Microbiology.

[177]  M. Wiedmann,et al.  Implementation of statistical tools to support identification and management of persistent Listeria monocytogenes contamination in smoked fish processing plants. , 2013, Journal of food protection.

[178]  J. Bray,et al.  MLST revisited: the gene-by-gene approach to bacterial genomics , 2013, Nature Reviews Microbiology.

[179]  C A Nadon,et al.  Development and application of MLVA methods as a tool for inter-laboratory surveillance. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[180]  Ruth Timme,et al.  On the Evolutionary History, Population Genetics and Diversity among Isolates of Salmonella Enteritidis PFGE Pattern JEGX01.0004 , 2013, PloS one.

[181]  Keith A. Jolley,et al.  Real-Time Genomic Epidemiological Evaluation of Human Campylobacter Isolates by Use of Whole-Genome Multilocus Sequence Typing , 2013, Journal of Clinical Microbiology.

[182]  Shaohua Zhao,et al.  Genetic Diversity and Evolution of Salmonella enterica Serovar Enteritidis Strains with Different Phage Types , 2014, Journal of Clinical Microbiology.

[183]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[184]  Ole Lund,et al.  In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing , 2014, Antimicrobial Agents and Chemotherapy.

[185]  Rene S. Hendriksen,et al.  Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages , 2014, Emerging infectious diseases.

[186]  Justin Zobel,et al.  SRST2: Rapid genomic surveillance for public health and hospital microbiology labs , 2014, bioRxiv.

[187]  D. Engelthaler,et al.  Comparative Analysis of Subtyping Methods against a Whole-Genome-Sequencing Standard for Salmonella enterica Serotype Enteritidis , 2014, Journal of Clinical Microbiology.

[188]  Arthur W. Pightling,et al.  Choice of Reference Sequence and Assembler for Alignment of Listeria monocytogenes Short-Read Sequence Data Greatly Influences Rates of Error in SNP Analyses , 2014, PloS one.

[189]  Z. Iqbal,et al.  Rapid Whole-Genome Sequencing for Surveillance of Salmonella enterica Serovar Enteritidis , 2014, Emerging infectious diseases.

[190]  Frank M. Aarestrup,et al.  Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data , 2015, Journal of Clinical Microbiology.

[191]  Yan Luo,et al.  CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data , 2015, PeerJ Comput. Sci..

[192]  Yanlong Yin,et al.  Salmonella Serotype Determination Utilizing High-Throughput Genome Sequencing Data , 2015, Journal of Clinical Microbiology.

[193]  Joshua Quick,et al.  Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella , 2015, Genome Biology.

[194]  E. Denamur,et al.  Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. , 2015, Microbiology.

[195]  Cheryl L. Tarr,et al.  Metagenomics of Two Severe Foodborne Outbreaks Provides Diagnostic Signatures and Signs of Coinfection Not Attainable by Traditional Methods , 2016, Applied and Environmental Microbiology.

[196]  David A. Matthews,et al.  Real-time, portable genome sequencing for Ebola surveillance , 2016, Nature.

[197]  Eduardo N. Taboada,et al.  The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies , 2016, PloS one.

[198]  Yi Chen,et al.  Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[199]  Hannes Pouseele,et al.  Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States , 2016, Front. Microbiol..

[200]  R. Colwell,et al.  Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak , 2016, BMC Microbiology.

[201]  Sara S. K. Koenig,et al.  Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks , 2016, Front. Microbiol..

[202]  Marc W. Allard Commentary: The Future of Whole-Genome Sequencing for Public Health and the Clinic , 2016, Journal of Clinical Microbiology.

[203]  Eduardo P C Rocha,et al.  Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes , 2016, Nature Microbiology.

[204]  Anuj Gupta,et al.  stringMLST: a fast k-mer based tool for multilocus sequence typing , 2017, Bioinform..

[205]  I. Van Walle,et al.  PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[206]  Keith A. Jolley,et al.  Core Genome Multilocus Sequence Typing Scheme for Stable, Comparative Analyses of Campylobacter jejuni and C. coli Human Disease Isolates , 2017, Journal of Clinical Microbiology.

[207]  E. Trees,et al.  Shiga Toxin–Producing E. coli Infections Associated with Flour , 2017, The New England journal of medicine.

[208]  Gary Van Domselaar,et al.  A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens , 2017, Front. Microbiol..

[209]  Claire Jenkins,et al.  Epidemiological analysis of Salmonella clusters identified by whole genome sequencing, England and Wales 2014. , 2017, Food microbiology.