TRUMP: Efficient and Flexible Realization of Medium Access Control Protocols for Wireless Networks

In order to cope with the increasing complexity of wireless networks, dynamic spectrum access, and varying application needs, fast and flexible reconfiguration of protocol stack is desired. Since Medium Access Control (MAC) layer plays a pivotal role in providing efficient spectrum sharing and utilization, rapid on-the-fly reconfigurability of MAC protocols is highly important. We have designed and implemented TRUMP: a Toolchain for RUntiMe Protocol realization. Based on the component-oriented design approach, TRUMP allows runtime realization, reconfiguration, and optimization of MAC layer according to the varying application requirements, spectral environmental, and network conditions. TRUMP, with a platform-independent MAC meta-language, also enables rapid MAC prototyping. In this article, we carry out a detailed performance evaluation of MAC schemes realized through TRUMP on WARP SDR platform. Our results indicate that TRUMP allows reconfiguration of MAC schemes in the order of a few microseconds, thus meeting the strict timeliness requirements of MAC processing. We also present application examples to highlight capabilities of TRUMP.

[1]  Petri Mähönen,et al.  Exploring parallelization for medium access schemes on many-core software defined radio architecture , 2013, SRIF '13.

[2]  Lazaros F. Merakos,et al.  A survey of dynamically adaptable protocol stacks , 2010, IEEE Communications Surveys & Tutorials.

[3]  Ashish Sharma,et al.  MadMAC: Building a Reconfiguration Radio Testbed using Commodity 802.11 Hardware , 2006, 2006 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks.

[4]  Luiz A. DaSilva,et al.  Experiences from the Iris Testbed in Dynamic Spectrum Access and Cognitive Radio Experimentation , 2010, 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN).

[5]  P. Mähönen,et al.  Demo: runtime MAC reconfiguration using a meta-compiler assisted toolchain , 2012, CCRV.

[6]  Petri Mahonen,et al.  TRUMP: Supporting efficient realization of protocols for cognitive radio networks , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[7]  Elizabeth M. Belding-Royer,et al.  FreeMAC: framework for multi-channel mac development on 802.11 hardware , 2008, PRESTO '08.

[8]  Petri Mähönen,et al.  A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks , 2013, Comput. Commun..

[9]  Mark Handley,et al.  From protocol stack to protocol heap: role-based architecture , 2003, CCRV.

[10]  Petri Mahonen,et al.  Enabling flexible medium access design for wireless sensor networks , 2011, 2011 Eighth International Conference on Wireless On-Demand Network Systems and Services.

[11]  Larry L. Peterson,et al.  A dynamic network architecture , 1992, TOCS.

[12]  David G. Messerschmitt,et al.  Rethinking Components: From Hardware and Software to Systems , 2007, Proceedings of the IEEE.

[13]  Philip Levis,et al.  OpenRadio: a programmable wireless dataplane , 2012, HotSDN '12.

[14]  Andrew T. Campbell,et al.  A programmable MAC framework for utility-based adaptive quality of service support , 2000, IEEE Journal on Selected Areas in Communications.

[15]  Srinivasan Seshan,et al.  Enabling MAC Protocol Implementations on Software-Defined Radios , 2009, NSDI.

[16]  Ilenia Tinnirello,et al.  MAClets: active MAC protocols over hard-coded devices , 2012, CoNEXT '12.

[17]  Tsuhan Chen,et al.  FlexMAC: a wireless protocol development and evaluation platform based on commodity hardware , 2008, WiNTECH '08.

[18]  Ilenia Tinnirello,et al.  Wireless MAC processors: Programming MAC protocols on commodity Hardware , 2012, 2012 Proceedings IEEE INFOCOM.

[19]  Andreas Achtzehn,et al.  A flexible MAC development framework for cognitive radio systems , 2011, 2011 IEEE Wireless Communications and Networking Conference.

[20]  Ilenia Tinnirello,et al.  Wireless MAC Processor Networking: A Control Architecture for Expressing and Implementing High-Level Adaptation Policies in WLANs , 2013, IEEE Vehicular Technology Magazine.

[21]  Petri Mähönen,et al.  Demo: a mobility aware cooperative scheme for MAC reconfiguration in cognitive wireless networks , 2012, MobiSys '12.

[22]  Gopal Sakarkar,et al.  A Survey of Software Agent and Ontology , 2010 .

[23]  David Starobinski,et al.  Rateless Deluge: Over-the-Air Programming of Wireless Sensor Networks Using Random Linear Codes , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[24]  Xi Zhang Reconfigurable medium access control protocols for wireless networks , 2014 .

[25]  Eddie Kohler,et al.  The Click modular router , 1999, SOSP.

[26]  Dirk Grunwald,et al.  An architecture for Software Defined Cognitive Radio , 2010, 2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS).

[27]  Ahmed Khattab,et al.  Demonstration Abstract: WARP – A Flexible Platform for Clean-Slate Wireless Medium Access Protocol Design , 2008 .

[28]  D. Grunwald,et al.  SoftMAC – Flexible Wireless Research Platform , 2005 .

[29]  Hari Balakrishnan,et al.  Airblue: A system for cross-layer wireless protocol development , 2010, 2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS).

[30]  Hüseyin Arslan,et al.  A survey of spectrum sensing algorithms for cognitive radio applications , 2009, IEEE Communications Surveys & Tutorials.

[31]  Nick McKeown,et al.  OpenFlow: enabling innovation in campus networks , 2008, CCRV.

[32]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[33]  Haitao Wu,et al.  Sora: High Performance Software Radio Using General Purpose Multi-core Processors , 2009, NSDI.

[34]  T. Weingart,et al.  MultiMAC - an adaptive MAC framework for dynamic radio networking , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[35]  Hamid Sharif,et al.  Comparison of Throughput Performance for the IEEE 802.11a and 802.11g Networks , 2007, 21st International Conference on Advanced Information Networking and Applications (AINA '07).