Methodology and theory for partial least squares applied to functional data

The partial least squares procedure was originally developed to estimate the slope parameter in multivariate parametric models. More recently it has gained popularity in the functional data literature. There, the partial least squares estimator of slope is either used to construct linear predictive models, or as a tool to project the data onto a one-dimensional quantity that is employed for further statistical analysis. Although the partial least squares approach is often viewed as an attractive alternative to projections onto the principal component basis, its properties are less well known than those of the latter, mainly because of its iterative nature. We develop an explicit formulation of partial least squares for functional data, which leads to insightful results and motivates new theory, demonstrating consistency and establishing convergence rates.

[1]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[2]  Gilbert Saporta,et al.  PLS regression on a stochastic process , 2001, Comput. Stat. Data Anal..

[3]  Hans-Georg Muller,et al.  Varying-coefficient functional linear regression , 2010, 1102.5217.

[4]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[5]  Danh V. Nguyena,et al.  On partial least squares dimension reduction for microarray-based classi'cation: a simulation study , 2004 .

[6]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[7]  Ana M. Aguilera,et al.  Functional PLS logit regression model , 2007, Comput. Stat. Data Anal..

[8]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[9]  I. Helland Partial least squares regression and statistical models , 1990 .

[10]  Alexander Penlidis,et al.  The asymptotic variance of the univariate PLS estimator , 2002 .

[11]  H. Müller,et al.  Functional quadratic regression , 2010 .

[12]  A note on functional linear regression , 2009 .

[13]  A. Phatak,et al.  Exploiting the connection between PLS, Lanczos methods and conjugate gradients: alternative proofs of some properties of PLS , 2002 .

[14]  Qing-Hu Hou,et al.  Evaluation of some Hankel determinants , 2005, Adv. Appl. Math..

[15]  A. Lascoux Inversion des matrices de Hankel , 1990 .

[16]  P. Hall,et al.  Achieving near perfect classification for functional data , 2012 .

[17]  Gilbert Saporta,et al.  Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..

[18]  P. Reiss,et al.  Functional Principal Component Regression and Functional Partial Least Squares , 2007 .

[19]  P. Sarda,et al.  Varying-Coefficient Functional Linear Regression Models , 2008 .

[20]  Danh V. Nguyen,et al.  On partial least squares dimension reduction for microarray-based classification: a simulation study , 2004, Comput. Stat. Data Anal..

[21]  Gilbert Saporta,et al.  PLS classification of functional data , 2005, Comput. Stat..

[22]  Tom Fearn,et al.  Partial Least Squares Regression on Smooth Factors , 1996 .

[23]  L. E. Wangen,et al.  A theoretical foundation for the PLS algorithm , 1987 .

[24]  Masashi Sugiyama,et al.  The Degrees of Freedom of Partial Least Squares Regression , 2010, 1002.4112.

[25]  P. Garthwaite An Interpretation of Partial Least Squares , 1994 .

[26]  On prediction error in functional linear regression , 2008 .

[27]  Christian Berg,et al.  The Smallest Eigenvalue of Hankel Matrices , 2009, 0906.4506.

[28]  T. Hastie,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Discussion , 1993 .

[29]  Fang Yao,et al.  Additive modelling of functional gradients , 2010 .

[30]  A. Höskuldsson PLS regression methods , 1988 .

[31]  Robert Sabatier,et al.  Additive splines for partial least squares regression , 1997 .

[32]  Ana M. Aguilera,et al.  Using basis expansions for estimating functional PLS regression Applications with chemometric data , 2010 .

[33]  R. Bro,et al.  PLS works , 2009 .

[34]  A. Boulesteix,et al.  Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data , 2006, math/0608576.

[35]  H. Wold Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach , 1975, Journal of Applied Probability.