Observing Mass Transport to Understand Global Change and and to benefit Society : Science and User Needs - An international multi-disciplinary initiative for IUGG

Rory Bingham, Carla Braitenberg, Annette Eicker, Martin Horwath, Eric Ivins, Laurent Longuevergne, Isabelle Panet, Bert Wouters, Gianpaolo Balsamo, Melanie Becker, Decharme Bertrand, John D. Bolten, Jean-Paul Boy, Michiel van den Broeke, Anny Cazenave, Don Chambers, Tonie van Dam, Michel Diament, Albert van Dijk, Henryk Dobslaw, Petra Döll, Jörg Ebbing, James Famiglietti, Wei Feng, Rene Forsberg, Nick van de Giesen, Marianne Greff, Andreas Güntner, JunYi Guo, Shin-Chan Han, Edward Hanna, Kosuke Heki, György Hetényi, Steven Jayne, Weiping Jiang, Shuanggen Jin, Georg Kaser, Matt King, Armin Köhl, Harald Kunstmann, Jürgen Kusche, Thorne Lay, Anno Löcher, Scott Luthcke, Marta Marcos, Mark van der Meijde, Valentin Mikhailov, Christian Ohlwein, Fred Pollitz, Yadu Pokhrel, Rui Ponte, Matt Rodell, Cecilie Rolstad-Denby, Himanshu Save, Bridget Scanlon, Sonia Seneviratne, Frederique Seyler, Andrew Shepherd, Tony Song, Wim Spakman, C.K. Shum, Holger Steffen, Wenke Sun, Qiuhong Tang, Virendra Tiwari, Isabella Velicogna, John Wahr, Wouter van der Wal, Lei Wang, Hua Xie, Hsien-Chi Yeh, Pat Yeh, Ben Zaitchik, Victor Zlotnicki

[1]  H. Steffen,et al.  Optimal locations for absolute gravity measurements and sensitivity of GRACE observations for constraining glacial isostatic adjustment on the northern hemisphere , 2012 .

[2]  D. Stammer,et al.  Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations , 2011 .

[3]  Michael G. Sideris,et al.  Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America , 2008 .

[4]  R. Sabadini,et al.  A source model for the great 2011 Tohoku earthquake (Mw=9.1) from inversion of GRACE gravity data , 2012 .

[5]  M. Camp,et al.  Retrieving earthquake signature in grace gravity solutions , 2008 .

[6]  Mioara Mandea,et al.  Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients , 2014 .

[7]  M. Greff-Lefftz,et al.  Surface gravitational field and topography changes induced by the Earth’s fluid core motions , 2004 .

[8]  W. Wal,et al.  Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 Sumatra-Andaman earthquake , 2011 .

[9]  Erik R. Ivins,et al.  Simple models for late Holocene and present-day Patagonian glacier fluctuations and predictions of a geodetically detectable isostatic response , 1999 .

[10]  S. Rosat Optimal Seismic Source Mechanisms to Excite the Slichter Mode , 2007 .

[11]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[12]  C. Shum,et al.  Comparisons among contemporary glacial isostatic adjustment models , 2012 .

[13]  N. Picot,et al.  Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents , 2014 .

[14]  Yong Wang,et al.  Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness , 2009 .

[15]  W. Featherstone,et al.  The north‐south tilt in the Australian Height Datum is explained by the ocean's mean dynamic topography , 2012 .

[16]  Carl Wunsch,et al.  On Using Satellite Altimetry to Determine the General Circulation of the Oceans With Application to Geoid Improvement (Paper 80R0631) , 1980 .

[17]  P. V. Keken Evolution of starting mantle plumes: a numerical and laboratory , 1997 .

[18]  Jérôme Vergne,et al.  Joint inversion of teleseismic and GOCE gravity data: application to the Himalayas , 2011 .

[19]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[20]  C. Braitenberg,et al.  Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil , 2013 .

[21]  Scott B. Luthcke,et al.  Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large‐scale mass redistribution , 2010 .

[22]  Impact of Accurate Geoid Fields on Estimates of the Ocean Circulation , 2007 .

[23]  I. Sasgen,et al.  Antarctic ice-mass balance 2002 to 2011: regional re-analysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment , 2012 .

[24]  Guillaume Ramillien,et al.  Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet‐Kerguelen region , 2006 .

[25]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[26]  Wenke Sun,et al.  A Reinvestigation of Crustal Thickness in the Tibetan Plateau Using Absolute Gravity, GPS and GRACE Data , 2011 .

[27]  Peter J. Clarke,et al.  Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading , 2014 .

[28]  J. Bamber,et al.  Seasonal variations in sea level induced by continental water mass: First results from GRACE , 2011 .

[29]  Olga Didova,et al.  Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change , 2013, The Cryosphere.

[30]  Michael Schmidt,et al.  GOCE gravity gradient data for lithospheric modeling , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[31]  Wenke Sun,et al.  Coseismic deformations detectable by satellite gravity missions: A case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain , 2004 .

[32]  Zdenek Martinec,et al.  A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[33]  C. Shum,et al.  Three‐dimensional fold structure of the Tibetan Moho from GRACE gravity data , 2009 .

[34]  J. Willis,et al.  Assessing the globally averaged sea level budget on seasonal to interannual timescales , 2008 .

[35]  Chung-Yen Kuo,et al.  Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations , 2012 .

[36]  C. Shum,et al.  Gravitational gradient changes following the 2004 December 26 Sumatra–Andaman Earthquake inferred from GRACE , 2012 .

[37]  Moho Estimation Using GOCE Data: A Numerical Simulation , 2012 .

[38]  Teh-Ru Alex Song,et al.  Large Trench-Parallel Gravity Variations Predict Seismogenic Behavior in Subduction Zones , 2003, Science.

[39]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[40]  W. Featherstone,et al.  Topographic/isostatic evaluation of newgeneration GOCE gravity field models , 2012 .

[41]  Shin-Chan Han,et al.  Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields , 2013 .

[42]  Rodrigo Pedreros,et al.  Is there a best source model of the Sumatra 2004 earthquake for simulating the consecutive tsunami , 2011 .

[43]  I. Panet,et al.  New constraints on the origin of the Hawaiian swell from wavelet analysis of the geoid to topography ratio , 2012 .

[44]  Chung-Yen Kuo,et al.  Global Sea Level Rise: Recent Progress and Challenges for the Decade to Come , 2010 .

[45]  Shin-Chan Han,et al.  Broadscale postseismic gravity change following the 2011 Tohoku-Oki earthquake and implication for deformation by viscoelastic relaxation and afterslip , 2014, Geophysical research letters.

[46]  Wenke Sun,et al.  Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw = 9.0 Tohoku‐Oki earthquake , 2012 .

[47]  Archie Paulson,et al.  Limitations on the inversion for mantle viscosity from postglacial rebound , 2007 .

[48]  R. Ponte,et al.  Satellite‐derived interannual ocean bottom pressure variability and its relation to sea level , 2013 .

[49]  M. Fuchs,et al.  Advancements in satellite gravity gradient data for crustal studies , 2013 .

[50]  K. Lambeck,et al.  GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria, Australia , 2008 .

[51]  Chen Ji,et al.  Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data , 2008 .

[52]  Matt A. King,et al.  Lower satellite-gravimetry estimates of Antarctic sea-level contribution , 2012, Nature.

[53]  I. Fukumori,et al.  Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE , 2007 .

[54]  G. Spada,et al.  Decadal geodetic variations in Ny-Ålesund (Svalbard): role of past and present ice-mass changes , 2014 .

[55]  C. Braitenberg,et al.  The European Alps and nearby orogenic belts sensed by GOCE , 2013 .

[56]  M. van der Meijde,et al.  Gravity derived Moho for South America , 2013 .

[57]  C. Braitenberg,et al.  Explaining the thick crust in Parana basin, Brazil, with satellite GOCE gravity observations , 2013 .

[58]  Rongjiang Wang,et al.  Gravity changes due to the Sumatra-Andaman and Nias earthquakes as detected by the GRACE satellites: a reexamination , 2010 .

[59]  Houze Xu,et al.  Moho undulations beneath Tibet from GRACE-integrated gravity data , 2007 .

[60]  C. Braitenberg,et al.  New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data , 2009 .

[61]  John C. Ries,et al.  Large scale ocean circulation from the GRACE GGM01 Geoid , 2003 .

[62]  R. Larson Latest pulse of Earth: Evidence for a mid-Cretaceous superplume , 1991 .

[63]  M. Tamisiea,et al.  Ongoing glacial isostatic contributions to observations of sea level change , 2011 .

[64]  S. Cloetingh,et al.  An integrated gravity model for Europe's crust and upper mantle , 2010 .

[65]  Fred F. Pollitz,et al.  Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake , 2010 .

[66]  Shuanggen Jin,et al.  Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models , 2013 .

[67]  R. Ponte A preliminary model study of the large‐scale seasonal cycle in bottom pressure over the global ocean , 1999 .

[68]  R. W. Griffiths,et al.  Implications of mantle plume structure for the evolution of flood basalts , 1990 .

[69]  R. Sabadini,et al.  GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake , 2011 .

[70]  Carl Wunsch,et al.  Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large‐scale ocean circulation , 1994 .

[71]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[72]  N. Ussami,et al.  Modeling 3‐D density distribution in the mantle from inversion of geoid anomalies: Application to the Yellowstone Province , 2013 .

[73]  S. Miyazaki,et al.  A slow thrust slip event following the two 1996 Hyuganada Earthquakes beneath the Bungo Channel, southwest Japan , 1999 .

[74]  D. Chambers,et al.  GRACE, time-varying gravity, Earth system dynamics and climate change , 2014, Reports on progress in physics. Physical Society.

[75]  Don Chambers,et al.  Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE , 2010 .

[76]  V. Zlotnicki,et al.  Subpolar ocean bottom pressure oscillation and its links to the tropical ENSO , 2008 .

[77]  Koji Matsuo,et al.  Time-variable ice loss in Asian high mountains from satellite gravimetry , 2010 .

[78]  E. Okal,et al.  Broad-scale gravity changes following the 2011 Tohoku-Oki thrust and 2012 Indian Ocean strike-slip earthquakes and implications for coseismic dilatation and viscoelastic relaxation , 2014 .

[79]  Reiner Rummel,et al.  Height unification using GOCE , 2012 .

[80]  M. Dumberry Gravity variations induced by core flows , 2010 .

[81]  Eelco Doornbos,et al.  The Need for a Standard for Satellite Drag Computation to Improve Consistency Betweeen Thermosphere Density Models and Data Sets , 2013 .

[82]  C. Wunsch,et al.  The mean seasonal cycle in sea level estimated from a data‐constrained general circulation model , 2008 .

[83]  Eelco Doornbos,et al.  Neutral Density and Crosswind Determination from Arbitrarily Oriented Multiaxis Accelerometers on Satellites , 2010 .

[84]  F. Pollitz Geophysics. A new class of earthquake observations. , 2006, Science.

[85]  J. Bamber,et al.  Sea‐level fingerprint of continental water and ice mass change from GRACE , 2010 .

[86]  M. Eshagh,et al.  Recovery of Moho’s undulations based on the Vening Meinesz–Moritz theory from satellite gravity gradiometry data : A simulation study , 2012 .

[87]  C. Shum,et al.  Coseismic and postseismic deformation of the 2011 Tohoku‐Oki earthquake constrained by GRACE gravimetry , 2012 .

[88]  Richard Biancale,et al.  Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation , 2009 .

[89]  Koji Matsuo,et al.  Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry , 2010 .

[90]  Chen Ji,et al.  Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake , 2006, Science.

[91]  Matt A. King,et al.  A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates , 2012 .

[92]  Zdenek Martinec,et al.  Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the Atlantic-Mediterranean transition zone , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[93]  E. Ivins,et al.  Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat , 2005 .

[94]  Rongjiang Wang,et al.  Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake , 2011 .

[95]  P. Visser,et al.  Observing coseismic gravity change from the Japan Tohoku‐Oki 2011 earthquake with GOCE gravity gradiometry , 2013 .

[96]  F. Gilbert,et al.  Temporal Variation of the Seismic Moment Tensor and the Evidence of Precursive Compression for Two Deep Earthquakes , 1974, Nature.

[97]  S. Schwartz Episodic Aseismic Slip at Plate Boundaries , 2015 .

[98]  C. Wunsch,et al.  How well does a 1/4° global circulation model simulate large-scale oceanic observations? , 1996 .

[99]  Axel Rülke,et al.  On-land ice loss and glacial isostatic adjustment at the drake passage: 2003-2009 , 2011 .

[100]  Richard Biancale,et al.  Atmospheric densities derived from CHAMP/STAR accelerometer observations , 2004 .

[101]  M. Tamisiea,et al.  Self‐attraction and loading effects on ocean mass redistribution at monthly and longer time scales , 2011 .

[102]  Raphaël F. Garcia,et al.  GOCE: The first seismometer in orbit around the Earth , 2013 .

[103]  L. Metivier,et al.  Pacific geoid anomalies revisited in light of thermochemical oscillating domes in the lower mantle , 2011 .

[104]  Reinhard Dietrich,et al.  Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models , 2014 .

[105]  T. Fuller‐Rowell,et al.  Thermospheric zonal mean winds and tides revealed by CHAMP , 2013 .

[106]  P. Wignall Large igneous provinces and mass extinctions , 2001 .

[107]  J. M. Picone,et al.  Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects , 2008 .

[108]  Andrea Bordoni,et al.  Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland , 2008 .

[109]  Longwei Xiang,et al.  Increased water storage in North America and Scandinavia from GRACE gravity data , 2012, Nature Geoscience.

[110]  C. Braitenberg,et al.  The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields , 2011 .

[111]  J. Lemoine,et al.  The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C , 2008 .

[112]  Michael B. Heflin,et al.  Simultaneous estimation of global present-day water transport and glacial isostatic adjustment , 2010 .

[113]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[114]  R. Ponte,et al.  Interannual Bottom Pressure Signals in the Australian–Antarctic and Bellingshausen Basins , 2014 .

[115]  Carla Braitenberg,et al.  xploration of tectonic structures with GOCE in Africa and cross-continents arla , 2014 .

[116]  M. Sideris,et al.  Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America , 2008 .

[117]  A. Tassara Control of forearc density structure on megathrust shear strength along the Chilean subduction zone , 2010 .

[118]  The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? , 2012 .

[119]  C. Hughes,et al.  Propagation of signals in basin‐scale ocean bottom pressure from a barotropic model , 2006 .

[120]  D. Chambers,et al.  Accuracy assessment of the large‐scale dynamic ocean topography from TOPEX/POSEIDON altimetry , 1994 .

[121]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[122]  F. Sigmundsson,et al.  Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling , 2013 .

[123]  Rongjiang Wang,et al.  Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes , 2014 .