Effect of site-directed mutagenesis at the GGEEF domain of the biofilm forming GGEEF protein from Vibrio cholerae

[1]  K. Sauer,et al.  The Diguanylate Cyclase GcbA Facilitates Pseudomonas aeruginosa Biofilm Dispersion by Activating BdlA , 2014, Journal of bacteriology.

[2]  R. Hengge Novel tricks played by the second messenger c‐di‐GMP in bacterial biofilm formation , 2013, The EMBO journal.

[3]  G. O’Toole,et al.  Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. , 2012, Annual review of cell and developmental biology.

[4]  P. Howell,et al.  Expression, purification, crystallization and preliminary X-ray analysis of Pseudomonas aeruginosa PelD. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[5]  S. Chou,et al.  The structure and inhibition of a GGDEF diguanylate cyclase complexed with (c-di-GMP)(2) at the active site. , 2011, Acta crystallographica. Section D, Biological crystallography.

[6]  F. Cutruzzolà,et al.  Metabolism of cyclic-di-GMP in bacterial biofilms: From a general overview to biotechnological applications , 2011 .

[7]  Jill E. Gready,et al.  Optimization of parameters for molecular dynamics simulation using smooth particle‐mesh Ewald in GROMACS 4.5 , 2011, J. Comput. Chem..

[8]  H. Endtz,et al.  Genetic characterization of Vibrio cholerae O1 strains isolated in Zambia during 1996–2004 possessing the unique VSP-II region of El Tor variant , 2011, Epidemiology and Infection.

[9]  D. Speicher,et al.  Purification of proteins fused to glutathione S-transferase. , 2011, Methods in molecular biology.

[10]  Lian-Hui Zhang,et al.  Modulation of Pseudomonas aeruginosa Biofilm Dispersal by a Cyclic-Di-GMP Phosphodiesterase with a Putative Hypoxia-Sensing Domain , 2010, Applied and Environmental Microbiology.

[11]  Hongbin Yan,et al.  3',5'-Cyclic diguanylic acid: a small nucleotide that makes big impacts. , 2010, Chemical Society reviews.

[12]  Roger G. Linington,et al.  Identification and Characterization of a Phosphodiesterase That Inversely Regulates Motility and Biofilm Formation in Vibrio cholerae , 2010, Journal of bacteriology.

[13]  Ann M Stock,et al.  Catalytically incompetent by design. , 2009, Structure.

[14]  P. Watnick,et al.  Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms , 2009, Microbiology and Molecular Biology Reviews.

[15]  B. Bassler,et al.  Distinct Sensory Pathways in Vibrio cholerae El Tor and Classical Biotypes Modulate Cyclic Dimeric GMP Levels To Control Biofilm Formation , 2008, Journal of bacteriology.

[16]  Joshua D. Rabinowitz,et al.  Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT , 2004, Journal of bacteriology.

[17]  A. Camilli,et al.  Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. , 2007, Annual review of microbiology.

[18]  Bentley Lim,et al.  Regulation of Vibrio Polysaccharide Synthesis and Virulence Factor Production by CdgC, a GGDEF-EAL Domain Protein, in Vibrio cholerae , 2007, Journal of bacteriology.

[19]  J. M. Dow,et al.  Cyclic Di-GMP Signaling in Bacteria: Recent Advances and New Puzzles , 2006, Journal of bacteriology.

[20]  Matthias Christen,et al.  Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP* , 2005, Journal of Biological Chemistry.

[21]  Mark Gomelsky,et al.  Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain , 2005, Journal of bacteriology.

[22]  A. Camilli,et al.  Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.

[23]  David A. D'Argenio,et al.  Cyclic di-GMP as a bacterial second messenger. , 2004, Microbiology.

[24]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[25]  Roman A. Laskowski,et al.  PDBsum: summaries and analyses of PDB structures , 2001, Nucleic Acids Res..

[26]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[27]  D. Amikam,et al.  The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. , 1990, The Journal of biological chemistry.

[28]  D. Michaeli,et al.  Control of cellulose synthesis Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase , 1986 .

[29]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[30]  R. J. Ball,et al.  Improved motility medium. , 1966, Applied microbiology.

[31]  J. V. Van Etten,et al.  Changes in Fungi with Age II. Respiration and Respiratory Enzymes of Rhizoctonia solani and Sclerotium bataticola , 1966, Journal of bacteriology.