Intermediate-Mass Black Holes in Colliding Clusters: Implications for Lower Frequency Gravitational-Wave Astronomy

Observations suggest that star clusters often form in binaries or larger bound groups. Therefore, mergers between two clusters are likely to occur. If these clusters both harbor an intermediate-mass black hole (IMBH; ~102-104 M☉) in their center, they can become a strong source of gravitational waves when the black holes merge with each other. To understand the dynamical processes that operate in such a scenario, we simulate the merger of two stellar clusters each containing 63,000 particles and a central IMBH, using the direct-summation NBODY4 code on special-purpose GRAPE6 hardware. Within ~7 Myr the clusters have merged and the IMBHs constitute a hard binary. The final coalescence happens in ~108 yr. We find that interactions with stars increase the eccentricity of the IMBH binary to about 0.8. Although the binary later circularizes by emission of gravitational waves, the residual eccentricity can be detectable by the Laser Interferometer Space Antenna (LISA) through its influence on the phase of the waves if the last few years of inspiral are observed. For proposed higher frequency space-based missions such as the Big Bang Observer (BBO), whose first purpose is to search for an inflation-generated gravitational waves background in the 10-1 to 1 Hz range, binary IMBH inspirals would be a foreground noise source. However, we find that the inspiral signals could be characterized accurately enough that they could be removed from the data stream and in the process provide us with detailed information about these astrophysical events.

[1]  P. Hut,et al.  Gravitational N-body Simulations , 2008, 0806.3950.

[2]  R. O’Shaughnessy,et al.  Observing IMBH-IMBH Binary Coalescences via Gravitational Radiation , 2006, astro-ph/0605732.

[3]  Pau Amaro-Seoane,et al.  Stellar Remnants in Galactic Nuclei: Mass Segregation , 2006 .

[4]  F. Rasio,et al.  Massive Black Hole Binaries from Collisional Runaways , 2005, astro-ph/0512642.

[5]  J. Harms,et al.  Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.

[6]  Heidelberg,et al.  Runaway collisions in young star clusters – I. Methods and tests , 2005, astro-ph/0503129.

[7]  Heidelberg,et al.  Runaway collisions in young star clusters - II. Numerical results , 2005, astro-ph/0503130.

[8]  M. Gregg,et al.  Ultra-compact dwarf galaxies: a new component of galaxy clusters and groups , 2005, Proceedings of the International Astronomical Union.

[9]  P. Salucci,et al.  Baryons in Dark Matter Halos , 2005, astro-ph/0502215.

[10]  P. Kroupa,et al.  A possible formation scenario for the ultramassive cluster W3 in NGC 7252 , 2005 .

[11]  M. Milosavljevic,et al.  Massive Black Hole Binary Evolution , 2004, astro-ph/0410364.

[12]  Helmut Jerjen,et al.  Near-field Cosmology with Dwarf Elliptical Galaxies , 2005 .

[13]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. II. Realistic Cluster Models , 2004, astro-ph/0406231.

[14]  P. Hut,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[15]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[16]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[17]  D. C. Heggie,et al.  Celestial Mechanics and Dynamical Astronomy , 2004 .

[18]  R. Della Ceca,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[19]  W. Couch,et al.  Formation of Star Clusters in the Large Magellanic Cloud and Small Magellanic Cloud. I. Preliminary Results on Cluster Formation from Colliding Gas Clouds , 2003, astro-ph/0312112.

[20]  Sverre J. Aarseth,et al.  Gravitational N-Body Simulations , 2003 .

[21]  Matthew Bierbaum,et al.  Formation of Massive Black Holes in Dense Star Clusters. I. Mass Segregation and Core Collapse , 2003, astro-ph/0308449.

[22]  S. Aarseth,et al.  A Time-Transformed Leapfrog Scheme , 2002 .

[23]  Heidelberg,et al.  A statistical study of binary and multiple clusters in the LMC , 2002, astro-ph/0206364.

[24]  S. Larson Online Sensitivity Curve Generator , 2002 .

[25]  P. Kroupa,et al.  The formation of ultracompact dwarf galaxies , 2001 .

[26]  B. Whitmore,et al.  Hubble Space Telescope Images of Stephan’s Quintet: Star Cluster Formation in a Compact Group Environment , 2001, astro-ph/0104005.

[27]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[28]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[29]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[30]  S. M. Fall,et al.  The Mass Function of Young Star Clusters in the “Antennae” Galaxies , 1999, The Astrophysical journal.

[31]  S. M. Fall,et al.  The Luminosity Function of Young Star Clusters in “the Antennae” Galaxies (NGC 4038/4039) , 1999, astro-ph/9907430.

[32]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[33]  Y. Kumai,et al.  Star Clusters Driven to Form by Strong Collisions Between Gas Clouds in High-Velocity Random Motion , 1997 .

[34]  G. Quinlan The time-scale for core collapse in spherical star clusters , 1996, astro-ph/9606182.

[35]  Cheongho Han,et al.  A Comparison of the Intrinsic Shapes of Globular Clusters in Four Different Galaxies , 1994 .

[36]  S. Bergh Star clusters in the clouds of Magellan , 1991 .

[37]  M. Kontizas,et al.  The morphology of star clusters in the SMC , 1990 .

[38]  M. Kontizas,et al.  Ellipticities at R(h) of LMC star clusters , 1989 .

[39]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[40]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .