Microstructural characterization of a directionally-solidified Ni–33 (at.%) Al–31Cr–3Mo eutectic alloy as a function of withdrawal rate

[1]  S. Raj,et al.  Effect of growth rate on elevated temperature plastic flow androom temperature fracture toughness of directionally solidified NiAl-31Cr-3Mo , 1999 .

[2]  T. Pollock,et al.  Numerical modeling of the creep behavior of unidirectional eutectic composites , 1998 .

[3]  A. Misra,et al.  Microstructures and mechanical properties of directionally solidified NiAl-Mo and NiAl-Mo(Re) eutectic alloys , 1997 .

[4]  J. Yang The mechanical behavior of in-situ NiAl-refractory metal composites , 1997 .

[5]  Jenn‐Ming Yang,et al.  Microstructure and mechanical behavior of in-situ directional solidified NiAl/Cr(Mo) eutectic composite , 1997 .

[6]  A. Karma,et al.  Morphological instabilities of lamellar eutectics , 1996 .

[7]  D. R. Johnson,et al.  Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl(Cr,Mo) eutectic systems , 1995 .

[8]  R. Field,et al.  Overview of NiAl Alloys for High Temperature Structural Applications , 1992 .

[9]  G. Ackland,et al.  HIGH-TEMPERATURE ORDERED INTERMETALLIC ALLOYS III , 1989 .

[10]  R. Trivedi Interdendritic Spacing: Part II. A Comparison of Theory and Experiment , 1984 .

[11]  M. McLean,et al.  Directionally Solidified Materials for High Temperature Service , 1984 .

[12]  H. Cline,et al.  Structures, faults, and the rod-plate transition in eutectics , 1971 .

[13]  H. Cline,et al.  The effect of solidification rate on structure and high-temperature strength of the eutectic NiAl-Cr , 1970 .