Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals
暂无分享,去创建一个
[1] Gregory Minton,et al. Voting, the Symmetric Group, and Representation Theory , 2007, Am. Math. Mon..
[2] Anton Leykin,et al. Noetherianity for infinite-dimensional toric varieties , 2013, 1306.0828.
[3] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[4] Akimichi Takemura,et al. A Markov basis for two-state toric homogeneous Markov chain model without initial parameters , 2010, 1005.1717.
[5] B. Sturmfels,et al. Binomial Ideals , 1994, alg-geom/9401001.
[6] Andrew Snowden,et al. Syzygies of Segre embeddings and $\Delta$-modules , 2010, 1006.5248.
[7] Joseph B. Kruskal,et al. The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.
[8] Claudiu Raicu. Secant varieties of Segre–Veronese varieties , 2010, 1011.5867.
[9] Daniel E. Cohen,et al. Closure Relations, Buchberger's Algorithm, and Polynomials in Infinitely Many Variables , 1987, Computation Theory and Logic.
[10] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Andrew Snowden,et al. Syzygies of Segre embeddings , 2010 .
[12] Alberto Vigneron-Tenorio,et al. On decomposable semigroups and applications , 2013, J. Symb. Comput..
[13] Seth Sullivant,et al. Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.
[14] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[15] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[16] Bernd Sturmfels,et al. Higher Lawrence configurations , 2003, J. Comb. Theory, Ser. A.
[17] Ruriko Yoshida,et al. Degree Bounds for a Minimal Markov Basis for the Three-State Toric Homogeneous Markov Chain Model , 2011, 1108.0481.
[18] Viktor Levandovskyy,et al. Letterplace ideals and non-commutative Gröbner bases , 2009, J. Symb. Comput..
[19] Alan R. Camina,et al. SOME INFINITE PERMUTATION MODULES , 1991 .
[20] Matthias Aschenbrenner,et al. ERRATUM FOR FINITE GENERATION OF SYMMETRIC IDEALS , 2009 .
[21] Tsit Yuen Lam,et al. A first course in noncommutative rings , 2002 .
[22] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[23] Eric H. Kuo. Viterbi sequences and polytopes , 2006, J. Symb. Comput..
[24] Anton Leykin,et al. Equivariant lattice generators and Markov bases , 2014, ISSAC.
[25] Matthias Aschenbrenner,et al. Finite generation of symmetric ideals , 2004, math/0411514.
[26] Seth Sullivant,et al. Toric ideals of phylogenetic invariants. , 2005, Journal of computational biology : a journal of computational molecular cell biology.
[27] Ivar Ugi,et al. Die Vandermondesche Determinante als Näherungsansatz für eine Chiralitätsbeobachtung, ihre Verwendung in der Stereochemie und zur Berechnung der optischen Aktivität , 1967 .
[28] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[29] Michiel Hazewinkel,et al. Algebras, rings and modules , 2004 .
[30] Seth Sullivant,et al. A finiteness theorem for Markov bases of hierarchical models , 2007, J. Comb. Theory, Ser. A.
[31] J. M. Landsberg,et al. On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..
[32] Martin Ziegler,et al. Quasi finitely axiomatizable totally categorical theories , 1986, Ann. Pure Appl. Log..
[33] Andries E. Brouwer,et al. Equivariant Gröbner bases and the Gaussian two-factor model , 2011, Math. Comput..
[34] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[35] Claudiu Raicu. The GSS Conjecture , 2010 .
[36] Jan Draisma,et al. Bounded-rank tensors are defined in bounded degree , 2011, 1103.5336.
[37] M. Kazarian,et al. KP hierarchy for Hodge integrals , 2008, 0809.3263.
[38] D. E Cohen,et al. On the laws of a metabelian variety , 1967 .
[39] M. Drton,et al. Algebraic factor analysis: tetrads, pentads and beyond , 2005, math/0509390.
[40] Jan Draisma,et al. Finiteness for the k-factor model and chirality varieties , 2008, 0811.3503.
[41] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[42] Jan Draisma,et al. On the ideals of equivariant tree models , 2007, 0712.3230.
[43] Akimichi Takemura,et al. Markov chain Monte Carlo test of toric homogeneous Markov chains , 2010, 1004.3599.
[44] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[45] Satoshi Aoki,et al. Minimal and minimal invariant Markov bases of decomposable models for contingency tables , 2010 .