Enhanced capacitive performance of nickel oxide on porous La0·7Sr0·3CoO3-δ ceramic substrate for electrochemical capacitors

[1]  Yanfang Gao,et al.  A porous biomass-based sandwich-structured Co3O4@Carbon Fiber@Co3O4 composite for high-performance supercapacitors , 2018 .

[2]  P. Ajayan,et al.  One-pot synthesis of nickel-cobalt hydroxyfluorides nanowires with ultrahigh energy density for an asymmetric supercapacitor. , 2018, Science bulletin.

[3]  Jian Song,et al.  Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitors , 2017 .

[4]  Huanhuan Du,et al.  Pseudocapacitance of nanoporous Ni@NiO nanoparticles on Ni foam substrate: Influence of the annealing temperature , 2017 .

[5]  R. Chandra,et al.  Single-step growth of pyramidally textured NiO nanostructures with improved supercapacitive properties , 2017 .

[6]  D. Brett,et al.  Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors , 2017 .

[7]  Qiuying Xia,et al.  Phosphate Ion Functionalized Co3O4 Ultrathin Nanosheets with Greatly Improved Surface Reactivity for High Performance Pseudocapacitors , 2017, Advanced materials.

[8]  Peng Huang,et al.  Properties and microstructural analysis of La1−xSrxCoO3−δ (x=0–0.6) cathode materials , 2017 .

[9]  Qingrong Qian,et al.  Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation , 2017 .

[10]  Yongyao Xia,et al.  Electrochemical capacitors: mechanism, materials, systems, characterization and applications. , 2016, Chemical Society reviews.

[11]  K. S. Hui,et al.  Correction: Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors , 2016 .

[12]  H. Alshareef,et al.  NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors , 2016 .

[13]  William G. Hardin,et al.  Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts , 2016, Nature Communications.

[14]  R. K. Jena,et al.  Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors , 2016 .

[15]  Yu Wang,et al.  Novel peapod NiO nanoparticles encapsulated in carbon fibers for high-efficiency supercapacitors and lithium-ion batteries , 2016 .

[16]  Hongying Quan,et al.  One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application , 2016 .

[17]  Sungkyun Park,et al.  NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications , 2016 .

[18]  Lei Zhang,et al.  Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors. , 2016, ACS applied materials & interfaces.

[19]  H. Xia,et al.  Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors. , 2015, ACS applied materials & interfaces.

[20]  N. Marzari,et al.  Oxygen Evolution Reaction on La1-xSrxCoO3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties , 2015 .

[21]  I. Kinloch,et al.  Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance. , 2015, ACS applied materials & interfaces.

[22]  Sheng-wu Guo,et al.  Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor , 2015 .

[23]  Minghao Yu,et al.  A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth , 2015, Advanced materials.

[24]  Guofa Cai,et al.  Electrochromo-supercapacitor based on direct growth of NiO nanoparticles , 2015 .

[25]  Bin Yang,et al.  Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high- performance supercapacitors , 2015 .

[26]  M. Schmal,et al.  LaCoO3 perovskite on ceramic monoliths – Pre and post reaction analyzes of the partial oxidation of methane , 2014 .

[27]  H. Duan,et al.  Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors. , 2014, ACS applied materials & interfaces.

[28]  Mingdeng Wei,et al.  Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application , 2014 .

[29]  N. Kawazoe,et al.  Pore size effect of collagen scaffolds on cartilage regeneration. , 2014, Acta biomaterialia.

[30]  Ashutosh Kumar Singh,et al.  Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. , 2014, ACS applied materials & interfaces.

[31]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[32]  J. Jang,et al.  Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications , 2014 .

[33]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[34]  Wei Lin,et al.  Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors , 2013 .

[35]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[36]  A. Manivannan,et al.  A reduced graphene oxide/Co3O4 composite for supercapacitor electrode , 2013 .

[37]  Jun Wang,et al.  Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode , 2013 .

[38]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[39]  Hyun‐Kon Song,et al.  Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. , 2013, ACS applied materials & interfaces.

[40]  Nenad M Markovic,et al.  Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. , 2012, Angewandte Chemie.

[41]  N. Bonanos,et al.  LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3−δ electrolyte , 2012 .

[42]  Yinglin Song,et al.  Low-temperature sintering and enhanced thermoelectric properties of LaCoO3 ceramics with B2O3–CuO addition , 2012 .

[43]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[44]  Y. Tong,et al.  Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications , 2012 .

[45]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[46]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[47]  Yong Zhang,et al.  Electrochemical investigation of MnO2 electrode material for supercapacitors , 2011 .

[48]  Minoru Inaba,et al.  Crystal Structure and Metal–Insulator Transition of La1−xSrxCoO3 , 1996 .

[49]  V. Cherepanov,et al.  Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 − y , 1995 .

[50]  J. Fransaer,et al.  A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading , 2017 .

[51]  B. Liu,et al.  Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance , 2015 .

[52]  Shesha H. Jayaram,et al.  Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes , 2014 .

[53]  Jingfeng Li,et al.  Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics , 2011 .