Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)

We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We introduce a new Datalog fragment with stratified negation, intensional-clique-guarded Datalog (ICG-Datalog), with linear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result proceeds via compilation to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated. Last, we prove that probabilistic query evaluation remains intractable in combined complexity under this parameterization.

[1]  A. Amarilli,et al.  Leveraging the structure of uncertain data , 2016 .

[2]  Georg Gottlob,et al.  Treewidth and Hypertree Width , 2014, Tractability.

[3]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[4]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[5]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[6]  Yehoshua Sagiv,et al.  Running tree automata on probabilistic XML , 2009, PODS.

[7]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[8]  Val Tannen,et al.  Provenance semirings , 2007, PODS.

[9]  Sharad Malik Analysis of cyclic combinational circuits , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Jehoshua Bruck,et al.  Cyclic Boolean circuits , 2012, Discret. Appl. Math..

[11]  Pierre Senellart,et al.  Probabilistic XML: Models and Complexity , 2013, Advances in Probabilistic Databases for Uncertain Information Management.

[12]  Reynold Cheng,et al.  ProbTree: a query-efficient representation of probabilistic graphs , 2014 .

[13]  Thierry Cachat Two-Way Tree Automata Solving Pushdown Games , 2001, Automata, Logics, and Infinite Games.

[14]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[15]  Alberto O. Mendelzon,et al.  Finding Regular Simple Paths in Graph Databases , 1989, SIAM J. Comput..

[16]  Jörg Flum,et al.  Query evaluation via tree-decompositions , 2001, JACM.

[17]  Anne Berry,et al.  An Introduction to Clique Minimal Separator Decomposition , 2010, Algorithms.

[18]  Michael Benedikt,et al.  A Step Up in Expressiveness of Decidable Fixpoint Logics , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[19]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[20]  Michael Benedikt,et al.  Effective Interpolation and Preservation in Guarded Logics , 2014, CSL-LICS.

[21]  Georg Gottlob,et al.  Hypertree Decompositions and Tractable Queries 1 , 2002 .

[22]  GottlobGeorg,et al.  Robbers, marshals, and guards , 2003 .

[23]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[24]  Jean-Camille Birget State-complexity of finite-state devices, state compressibility and incompressibility , 2005, Mathematical systems theory.

[25]  Antoine Amarilli The Possibility Problem for Probabilistic XML , 2014, AMW.

[26]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[27]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[28]  Georg Gottlob,et al.  The impact of virtual views on containment , 2010, Proc. VLDB Endow..

[29]  Reinhard Diestel,et al.  Simplicial decompositions of graphs: a survey of applications , 1989, Discret. Math..

[30]  Yehoshua Sagiv,et al.  Query efficiency in probabilistic XML models , 2008, SIGMOD Conference.

[31]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[32]  Mikaël Monet,et al.  Probabilistic Evaluation of Expressive Queries on Bounded-Treewidth Instances , 2016, SIGMOD PhD Symposium.

[33]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[34]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[35]  Dietmar Berwanger,et al.  Games and Model Checking for Guarded Logics , 2001, LPAR.

[36]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[37]  Georg Gottlob,et al.  Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width , 2001, PODS '01.

[38]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[39]  Hanns-Georg Leimer,et al.  Optimal decomposition by clique separators , 1993, Discret. Math..

[40]  Pierre Senellart,et al.  Tractable Lineages on Treelike Instances: Limits and Extensions , 2016, PODS.

[41]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[42]  Georg Gottlob,et al.  Datalog LITE: a deductive query language with linear time model checking , 2002, TOCL.

[43]  Diego Calvanese,et al.  Containment of Conjunctive Regular Path Queries with Inverse , 2000, KR.

[44]  Surajit Chaudhuri,et al.  On the equivalence of recursive and nonrecursive datalog programs , 1992, J. Comput. Syst. Sci..

[45]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[46]  Martin Grohe,et al.  Constraint solving via fractional edge covers , 2006, SODA 2006.

[47]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[48]  Georg Gottlob,et al.  Monadic datalog over finite structures of bounded treewidth , 2010, TOCL.

[49]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[50]  Dan Suciu,et al.  Management of probabilistic data: foundations and challenges , 2007, PODS '07.

[51]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[52]  Haim Gaifman,et al.  Decidable optimization problems for database logic programs , 1988, STOC '88.

[53]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[54]  FaginRonald Degrees of acyclicity for hypergraphs and relational database schemes , 1983 .

[55]  Thomas Schwentick,et al.  Optimizing Conjunctive Queries over Trees Using Schema Information , 2008, MFCS.

[56]  Ronald Fagin,et al.  Degrees of acyclicity for hypergraphs and relational database schemes , 1983, JACM.

[57]  Balder ten Cate,et al.  Guarded Negation , 2011, Advances in Modal Logic.

[58]  Michael Benedikt,et al.  Monadic Datalog Containment , 2012, ICALP.

[59]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[60]  Moshe Y. Vardi,et al.  Does query evaluation tractability help query containment? , 2014, PODS.

[61]  Jan Van den Bussche,et al.  The Semijoin Algebra and the Guarded Fragment , 2004, J. Log. Lang. Inf..

[62]  Balder ten Cate,et al.  Queries with Guarded Negation , 2012, Proc. VLDB Endow..

[63]  Daniel Deutch,et al.  Circuits for Datalog Provenance , 2014, ICDT.

[64]  Pierre Senellart,et al.  Provenance Circuits for Trees and Treelike Instances , 2015, ICALP.

[65]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[66]  Moshe Y. Vardi On the Complexity of Bounded-Variable Queries. , 1995, PODS 1995.

[67]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[68]  Sergio Greco,et al.  Querying Graph Databases , 2000, EDBT.