The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks

This research explores three SPARQL-based techniques to solve Semantic Web tasks that often require similarity measures, such as semantic data integration, ontology mapping, and Semantic Web service matchmaking. Our aim is to see how far it is possible to integrate customized similarity functions (CSF) into SPARQL to achieve good results for these tasks. Our first approach exploits virtual triples calling property functions to establish virtual relations among resources under comparison; the second approach uses extension functions to filter out resources that do not meet the requested similarity criteria; finally, our third technique applies new solution modifiers to post-process a SPARQL solution sequence. The semantics of the three approaches are formally elaborated and discussed. We close the paper with a demonstration of the usefulness of our iSPARQL framework in the context of a data integration and an ontology mapping experiment.

[1]  Constantin V. Negoita,et al.  On Fuzzy Systems , 1978 .

[2]  William W. Cohen Integration of heterogeneous databases without common domains using queries based on textual similarity , 1998, SIGMOD '98.

[3]  Kaizhong Zhang,et al.  Approximate tree pattern matching , 1997 .

[4]  Abraham Bernstein,et al.  Imprecise RDQL: towards generic retrieval in ontologies using similarity joins , 2006, SAC '06.

[5]  Kaizhong Zhang,et al.  Tree pattern matching , 1997, Pattern Matching Algorithms.

[6]  Matthias Klusch,et al.  Automated semantic web service discovery with OWLS-MX , 2006, AAMAS '06.

[7]  Kei-Hoi Cheung,et al.  AlzPharm: integration of neurodegeneration data using RDF , 2007, BMC Bioinformatics.

[8]  Mark E. Rorvig,et al.  Images of Similarity: A Visual Exploration of Optimal Similarity Metrics and Scaling Properties of TREC Topic-Document Sets , 1999, J. Am. Soc. Inf. Sci..

[9]  Jeff Z. Pan,et al.  Querying the Semantic Web with Preferences , 2006, SEMWEB.

[10]  A. Mestrovic,et al.  Semantic Web data integration using F-Logic , 2006, 2006 International Conference on Intelligent Engineering Systems.

[11]  Abraham Bernstein,et al.  OptARQ: A SPARQL Optimization Approach based on Triple Pattern Selectivity Estimation , 2007 .

[12]  Marcelo Arenas,et al.  Semantics and complexity of SPARQL , 2006, TODS.

[13]  Natasha F. Noy What do we need for ontology integration on the Semantic Web Position statement , 2003 .

[14]  Jérôme Euzenat,et al.  Ontology Alignment with OLA , 2004, EON.

[15]  Marc Ehrig,et al.  Similarity for Ontologies - A Comprehensive Framework , 2005, ECIS.

[16]  A. Tversky Features of Similarity , 1977 .

[17]  Richard Cyganiak,et al.  A relational algebra for SPARQL , 2005 .

[18]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[19]  Mark Klein,et al.  Semantic Process Retrieval with iSPARQL , 2007, ESWC.

[20]  Luis Gravano,et al.  Text joins in an RDBMS for web data integration , 2003, WWW '03.

[21]  Mark Klein,et al.  How Similar Is It? Towards Personalized Similarity Measures in Ontologies , 2005, Wirtschaftsinformatik.

[22]  A. Bernstein,et al.  Analyzing Software with iSPARQL , 2007 .

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[24]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[25]  V. Batagelj,et al.  Comparing resemblance measures , 1995 .

[26]  Mark A. Musen,et al.  The PROMPT suite: interactive tools for ontology merging and mapping , 2003, Int. J. Hum. Comput. Stud..

[27]  Lluís A. Belanche Muñoz,et al.  On aggregation operators of transitive similarity and dissimilarity relations , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).