Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

We demonstrate an optical conveyor belt for levitated nano-particles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to previous indirect measurement methods we find a linear pressure dependence inside the HCPCF extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nano-particles from ambient pressure into medium vacuum.

[1]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[2]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[3]  S. A. Beresnev,et al.  Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization , 1990, Journal of Fluid Mechanics.

[4]  M. Arndt,et al.  A universal matter-wave interferometer with optical ionization gratings in the time-domain , 2013, Nature Physics.

[5]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[6]  Lukas Novotny,et al.  Thermal nonlinearities in a nanomechanical oscillator , 2013, Nature Physics.

[7]  Tijmen G. Euser,et al.  Flying particle sensors in hollow-core photonic crystal fibre , 2015, Nature Photonics.

[8]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[9]  A. N. Vamivakas,et al.  Quantum Model of Cooling and Force Sensing With an Optically Trapped Nanoparticle , 2015 .

[10]  Arthur Ashkin,et al.  Optical levitation in high vacuum , 1976 .

[11]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[12]  Matthias Imboden,et al.  Dissipation in nanoelectromechanical systems , 2014 .

[13]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.

[14]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[15]  S. Garimella,et al.  Rarefied gas flow in microtubes at different inlet-outlet pressure ratios , 2009 .

[16]  A. Geraci,et al.  Detecting high-frequency gravitational waves with optically levitated sensors. , 2012, Physical review letters.

[17]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[18]  Felix Sharipov,et al.  Data on Internal Rarefied Gas Flows , 1998 .

[19]  M. N. Shneider,et al.  Cavity cooling of an optically trapped nanoparticle , 2009, 0910.1221.

[20]  M. Pinard,et al.  Full mechanical characterization of a cold damped mirror , 2000 .

[21]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[22]  D Meschede,et al.  Coherence properties and quantum state transportation in an optical conveyor belt. , 2003, Physical review letters.

[23]  P. Russell,et al.  Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber. , 2013, Optics Express.

[24]  Zhang-qi Yin,et al.  OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES , 2013, 1308.4503.

[25]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[26]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[27]  Tongcang Li,et al.  Fundamental Tests of Physics with Optically Trapped Microspheres , 2012 .

[28]  F. Marquardt,et al.  Dynamics of levitated nanospheres: towards the strong coupling regime , 2012, 1207.1567.

[29]  M. K. Garbos,et al.  Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber. , 2012, Optics letters.

[30]  A. Geraci,et al.  Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum , 2015, 1503.08799.

[31]  Lukas Novotny,et al.  Cooling and manipulation of a levitated nanoparticle with an optical fiber trap , 2015 .

[32]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[33]  Fetah Benabid,et al.  Particle levitation and guidance in hollow-core photonic crystal fiber. , 2002, Optics express.

[34]  Florian Blaser,et al.  Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.

[35]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[36]  N. Kiesel,et al.  Cavity optomechanics of levitated nanodumbbells: nonequilibrium phases and self-assembly. , 2012, Physical review letters.

[37]  Clifford J. Cremers,et al.  A User's Guide to Vacuum Technology , 1981 .

[38]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[39]  Christoph Dellago,et al.  Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. , 2014, Nature nanotechnology.

[40]  E. Marcatili,et al.  Hollow metallic and dielectric waveguides for long distance optical transmission and lasers , 1964 .

[41]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[42]  Markus Aspelmeyer,et al.  Optimal State Estimation for Cavity Optomechanical Systems. , 2015, Physical review letters.

[43]  Arthur Ashkin,et al.  Feedback stabilization of optically levitated particles , 1977 .

[44]  Giorgio Gratta,et al.  Search for millicharged particles using optically levitated microspheres. , 2014, Physical review letters.

[45]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[46]  E. Lutz,et al.  All-optical nanomechanical heat engine. , 2014, Physical review letters.