Pasting of lattice-ordered effect algebras

In this study, we present techniques for constructing a lattice-ordered effect algebra using a given family of MV-effect algebras. First, we introduce the Greechie diagrams of the pastings of a family of MV-effect algebras. As application of the Greechie diagrams, we provide some sufficient conditions for pasting a lattice-ordered effect algebra using a family of MV-effect algebras. Especially, we illustrate a kind of technique of how to obtain a lattice-ordered effect algebra by substituting the atoms of an orthomodular lattice with the lattice-ordered effect algebras. Finally, we prove a version of the "Loop Lemma" for MV-effect algebras pasting.

[1]  H. Weber There Are Orthomodular Lattices Without Non-trivial Group-Valued States: A Computer-Based Construction , 1994 .

[2]  Kuppusamy Ravindran,et al.  States on Effect Algebras That Have the ϕ-Symmetry Property , 1998 .

[3]  F. Chovanec,et al.  Graphic representation of MV-algebra pastings , 2013 .

[4]  Gejza Jenca Boolean algebras R-generated by MV-effect algebras , 2004, Fuzzy Sets Syst..

[5]  Yongjian Xie,et al.  The pasting constructions for effect algebras , 2014 .

[6]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[7]  G. Kalmbach On Orthomodular Lattices , 1990 .

[8]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[9]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[10]  Anatolij Dvurecenskij,et al.  D-homomorphisms and atomic σ-complete boolean D-posets , 2000, Soft Comput..

[11]  Zdenka Riečanová Pastings of MV-Effect Algebras , 2004 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Mirko Navara Existence of states on quantum structures , 2009, Inf. Sci..

[14]  David J. Foulis,et al.  Polar decomposition in e-rings , 2007 .

[15]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[16]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[17]  David J. Foulis,et al.  What are Quantum Logics and What Ought They to be , 1981 .

[18]  Zdenka Riečanová Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .

[19]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[20]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[21]  Mirko Navara,et al.  States on orthoalgebras , 1995 .

[22]  Frederic W. Shultz,et al.  A Characterization of State Spaces of Orthomodular Lattices , 1974, J. Comb. Theory A.

[23]  Mirko Navara,et al.  The Pasting Constructions for Orthomodular Posets , 1991 .

[24]  Yongjian Xie,et al.  The pasting constructions of lattice ordered effect algebras , 2010, Inf. Sci..

[25]  Markus Dichtl Astroids and pastings , 1984 .

[26]  Mária Jurečková,et al.  MV-Algebra Pasting , 2003 .

[27]  Mirko Navara An orthomodular lattice admitting no group-valued measure , 1994 .

[28]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[29]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[30]  Jan Paseka,et al.  Isomorphism theorems on generalized effect algebras based on atoms , 2009, Inf. Sci..

[31]  Zdenka Riecanová Continuous lattice effect algebras admitting order-continuous states , 2003, Fuzzy Sets Syst..

[32]  Mirko Navara Constructions of quantum structures , 2007 .