Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries

The escalating and unpredictable cost of oil, the concentration of major oil resources in the hands of a few politically sensitive nations, and the long-term impact of CO2 emissions on global climate constitute a major challenge for the 21st century. They also constitute a major incentive to harness alternative sources of energy and means of vehicle propulsion. Today's lithium-ion batteries, although suitable for small-scale devices, do not yet have sufficient energy or life for use in vehicles that would match the performance of internal combustion vehicles. Energy densities 2 and 5 times greater are required to meet the performance goals of a future generation of plug-in hybrid-electric vehicles (PHEVs) with a 40–80 mile all-electric range, and all-electric vehicles (EVs) with a 300–400 mile range, respectively. Major advances have been made in lithium-battery technology over the past two decades by the discovery of new materials and designs through intuitive approaches, experimental and predictive reasoning, and meticulous control of surface structures and chemical reactions. Further improvements in energy density of factors of two to three may yet be achievable for current day lithium-ion systems; factors of five or more may be possible for lithium–oxygen systems, ultimately leading to our ability to confine extremely high potential energy in a small volume without compromising safety, but only if daunting technological barriers can be overcome.

[1]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[2]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[3]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[4]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[5]  Alex Zunger,et al.  Cation and vacancy ordering in Li x CoO 2 , 1998 .

[6]  J. L. Sudworth,et al.  The sodium/nickel chloride (ZEBRA) battery , 2001 .

[7]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[8]  M. Thackeray,et al.  Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications , 1991 .

[9]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[10]  K. Amine,et al.  Layered Li(Li0.2Ni0.15 + 0.5zCo0.10Mn0.55 − 0.5z)O2 − zFz cathode materials for Li-ion secondary batteries , 2005 .

[11]  Christopher S. Johnson,et al.  Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries† , 2010 .

[12]  Michael M. Thackeray,et al.  Enhancing the rate capability of high capacity xLi2MnO3 · (1 -x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment , 2009 .

[13]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[14]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[15]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[16]  Michel Perrier,et al.  Safe Li-ion polymer batteries for HEV applications , 2004 .

[17]  Dahn,et al.  Valence band of LiNixMn2-xO4 and its effects on the voltage profiles of LiNixMn2-xO4/Li electrochemical cells. , 1996, Physical review. B, Condensed matter.

[18]  Michael Grätzel,et al.  Improving the Electrochemical Activity of LiMnPO4 Via Mn-Site Substitution , 2010 .

[19]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[20]  Kevin G. Gallagher,et al.  Countering the Voltage Decay in High Capacity xLi2MnO3•(1–x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries , 2012 .

[21]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[22]  Christopher M Wolverton,et al.  Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic Li[sub x]CoO[sub 2] , 1998 .

[23]  Arumugam Manthiram,et al.  Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4 , 2009 .

[24]  Dahn,et al.  Application of ab initio methods for calculations of voltage as a function of composition in electrochemical cells. , 1993, Physical review. B, Condensed matter.

[25]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[26]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[27]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[28]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[29]  Christopher S. Johnson,et al.  Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C , 2007 .

[30]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[31]  Christopher S. Johnson,et al.  Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells , 2011 .

[32]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[33]  Arumugam Manthiram,et al.  High Capacity, Surface-Modified Layered Li [ Li ( 1 − x ) ∕ 3Mn ( 2 − x ) ∕ 3Nix ∕ 3Cox ∕ 3 ] O2 Cathodes with Low Irreversible Capacity Loss , 2006 .

[34]  J. L. Sudworth,et al.  The sodium/sulphur battery , 1984 .

[35]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[36]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[37]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[38]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[39]  D. Fouchard,et al.  Analysis of safety and reliability in secondary lithium batteries , 1993 .

[40]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[41]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[42]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[43]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[44]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[45]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[46]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[47]  Jun Lu,et al.  Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes , 2011 .

[48]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[49]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[50]  Yang-Kook Sun,et al.  Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2cell at elevated temperature and additives to improve its cycle life , 2011 .

[51]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[52]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[53]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[54]  Christopher S. Johnson,et al.  Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides , 2002 .

[55]  M. Armand,et al.  Building better batteries , 2008, Nature.

[56]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .