The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions

Abstract This paper examines a class of Kirchhoff type equations that involve sign-changing weight functions. Using Nehari manifold and fibering map, the existence of multiple positive solutions is established.

[1]  Ahmed Bensedik,et al.  On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity , 2009, Math. Comput. Model..

[2]  Adimurthi,et al.  On the number of positive solutions of some semilinear Dirichlet problems in a ball , 1997, Differential and Integral Equations.

[3]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[4]  Pavel Drábek,et al.  Positive solutions for the p-Laplacian: application of the fibrering method , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Junping Shi,et al.  Exact multiplicity of solutions and S-shaped bifurcation curve for a class of semilinear elliptic equations , 2007 .

[6]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[7]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[8]  A. Ambrosetti,et al.  Multiplicity Results for Some Nonlinear Elliptic Equations , 1996 .

[9]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[10]  P. Binding,et al.  ON NEUMANN BOUNDARY VALUE PROBLEMS FOR SOME QUASILINEAR ELLIPTIC EQUATIONS , 1997 .

[11]  F. Corrêa On positive solutions of nonlocal and nonvariational elliptic problems , 2004 .

[12]  T. Ouyang,et al.  EXACT MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF SEMILINEAR PROBLEMS , 1998 .

[13]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[14]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[15]  Tsung‐fang Wu On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function , 2006 .

[16]  Kanishka Perera,et al.  Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , 2006 .

[17]  J. Gossez,et al.  Local superlinearity and sublinearity for indefinite semilinear elliptic problems , 2003 .

[18]  Tsung‐fang Wu Multiplicity Results for a Semi-Linear Elliptic Equation Involving Sign-Changing Weight Function , 2009 .

[19]  Y. Shibata,et al.  On global solvability of non‐linear viscoelastic equations in the analytic category , 1994 .

[20]  Tsung-fang Wu,et al.  ftp ejde.math.txstate.edu (login: ftp) A FIBERING MAP APPROACH TO A SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEM , 2022 .

[21]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[22]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[23]  Yihong Du,et al.  Exact Multiplicity and S-Shaped Bifurcation Curve for some Semilinear Elliptic Problems from Combustion Theory , 2000, SIAM Journal on Mathematical Analysis.

[24]  K. Nishihara On a Global Solution of Some Quasilinear Hyperbolic Equation , 1984 .

[25]  Haim Brezis,et al.  Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems , 1994 .

[26]  F. Pacella,et al.  Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle , 1999 .

[27]  M. Tang Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  K. J. Brown,et al.  A fibering map approach to a potential operator equation and its applications , 2009, Differential and Integral Equations.

[29]  K. J. Brown,et al.  The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function , 2003 .

[30]  P. Korman On uniqueness of positive solutions for a class of semilinear equations , 2002 .

[31]  Yueh-Cheng Kuo,et al.  A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrödinger equations , 2009, J. Comput. Phys..

[32]  I. Ekeland On the variational principle , 1974 .

[33]  Shin-Hwa Wang Rigorous analysis and estimates of S–shaped bifurcation curves in a combustion problem with general Arrhenius reaction–rate laws , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.