Filtering of Interferometric SAR Phase Images as a Fuzzy Matching-Pursuit Blind Estimation

We present an original application of fuzzy logic to restoration of phase images from interferometric synthetic aperture radar (InSAR), which are affected by zero-mean uncorrelated noise, whose variance depends on the underlying coherence, thereby yielding a nonstationary random noise process. Spatial filtering of the phase noise is recommended, either before phase unwrapping is accomplished, or simultaneously with it. In fact, phase unwrapping basically relies on a smoothness constraint of the phase field, which is severely hampered by the noise. Space-varying linear MMSE estimation is stated as a problem of matching pursuit, in which the estimator is obtained as an expansion in series of a finite number of prototype estimators, fitting the spatial features of the different statistical classes encountered, for example, fringes and steep slope areas. Such estimators are calculated in a fuzzy fashion through an automatic training procedure. The space-varying coefficients of the expansion are stated as degrees of fuzzy membership of a pixel to each of the estimators. Neither a priori knowledge on the noise variance is required nor particular signal and noise models are assumed. Filtering performances on simulated phase images show a steady SNR improvement over conventional box filtering. Applications of the proposed filter to interferometric phase images demonstrate a superior ability of restoring fringes yet preserving their discontinuities, together with an effective noise smoothing performance, irrespective of locally varying coherence characteristics.

[1]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[2]  L. Guerriero,et al.  Statistical mechanics approach to the phase unwrapping problem , 2000 .

[3]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[4]  Umberto Spagnolini,et al.  2-D phase unwrapping and instantaneous frequency estimation , 1995, IEEE Trans. Geosci. Remote. Sens..

[5]  Mihai Datcu,et al.  Bayesian approaches to phase unwrapping: theoretical study , 2000, IEEE Trans. Signal Process..

[6]  Gianfranco Fornaro,et al.  Minimum mean square error space-varying filtering of interferometric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  Jean-Marc Boucher,et al.  Multiscale MAP filtering of SAR images , 2001, IEEE Trans. Image Process..

[8]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[9]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  Richard Bamler,et al.  Multiresolution phase unwrapping for SAR interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  Henri Maître,et al.  Improving phase unwrapping techniques by the use of local frequency estimates , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  Ishuwa C. Sikaneta,et al.  Estimating the effective number of looks in interferometric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[14]  Luciano Alparone,et al.  Blind estimation of interferometric SAR phase images through fuzzy matching-pursuits , 2002, SPIE Remote Sensing.

[15]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Bruno Aiazzi,et al.  Blind image estimation through fuzzy matching pursuits , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[17]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[18]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. II , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Avideh Zakhor,et al.  Very low bit-rate video coding based on matching pursuits , 1997, IEEE Trans. Circuits Syst. Video Technol..

[20]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[21]  Louis A. Romero,et al.  Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods , 1994 .

[22]  Akira Hirose,et al.  Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application t o phase unwrapping problem , 2002, IEEE Trans. Geosci. Remote. Sens..

[23]  Carlos López-Martínez,et al.  Modeling and reduction of SAR interferometric phase noise in the wavelet domain , 2002, IEEE Trans. Geosci. Remote. Sens..

[24]  Konstantinos Papathanassiou,et al.  A new technique for noise filtering of SAR interferometric phase images , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[26]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[27]  Giovanni Poggi,et al.  A Bayesian filtering technique for SAR interferometric phase fields , 2004, IEEE Transactions on Image Processing.

[28]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[29]  Luciano Alparone,et al.  Coherence estimation from multilook incoherent SAR imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[31]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..