Deterministic Global Optimization for Dynamic Systems Using Interval Analysis

A new approach is described for the deterministic global optimization of dynamic systems, including problems in parameter estimation and optimal control. The method is based on interval analysis and Taylor models, and employs a sequential approach using a type of branch-and-reduce strategy. A key feature of the method is the use of a new validated solver for parametric ODEs, which is used to produce guaranteed bounds on the solutions of dynamic systems with interval-valued parameters. This is combined with a new technique for domain reduction based on using Taylor models in an efficient constraint propagation scheme. The result is that problems can be solved to global optimality with both mathematical and computational certainty. Examples are presented to demonstrate the computational efficiency of the method.

[1]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[2]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[3]  Martin Berz,et al.  Efficient Control of the Dependency Problem Based on Taylor Model Methods , 1999, Reliab. Comput..

[4]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[5]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[6]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[7]  L. Biegler,et al.  Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .

[8]  D. E. Cormack,et al.  Multiplicity of solutions resulting from the use of variational methods in optimal control problems , 1972 .

[9]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[10]  M. Stadtherr,et al.  Deterministic Global Optimization for Parameter Estimation of Dynamic Systems , 2006 .

[11]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[12]  Martin Berz,et al.  Verified global optimization with Taylor model based range bounders , 2005 .

[13]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Nonlinear Optimal Control Problems , 2000, J. Glob. Optim..

[14]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[15]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[16]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[17]  PAUL I. BARTON,et al.  Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations , 2005, SIAM J. Sci. Comput..

[18]  R. Luus Optimal control by dynamic programming using systematic reduction in grid size , 1990 .

[19]  George F. Corliss,et al.  Validating an A Priori Enclosure Using High-Order Taylor Series , 2007 .

[20]  Benoît Chachuat,et al.  A New Approach in Deterministic Global Optimisation of Problems with Ordinary Differential Equations , 2004 .

[21]  Paul I. Barton,et al.  Global Optimization with Nonlinear Ordinary Differential Equations , 2006, J. Glob. Optim..