Band-structure engineering in strained semiconductor lasers

The influence of both compressive and tensile strain on semiconductor lasers and optical amplifiers is reevaluated in the light of recent experimental and theoretical work. Strain reduces the three-dimensional symmetry of the lattice and helps match the wave functions of the holes to the one-dimensional symmetry of the laser beam. It can also decrease the density of states at the valence band maximum and so reduce the carrier density required to reach threshold. These two effects appear to adequately explain the TE and TM gain in compressive and tensile structures, including polarization-independent amplifiers, the behavior of visible lasers and the improved frequency characteristics of InGaAs/GaAs lasers. In 1.5 /spl mu/m InGaAsP/InP lasers phonon-assisted Auger recombination appears to remain the dominant current path and can explain why the temperature sensitivity parameter to remains >

[1]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[2]  Eoin P. O'Reilly,et al.  Chapter 7 – VALENCE BAND ENGINEERING IN QUANTUM WELL LASERS , 1993 .

[3]  M. Asada,et al.  The temperature dependence of the threshold current of GaInAsP/InP DH lasers , 1981, IEEE Journal of Quantum Electronics.

[4]  Kam Y. Lau,et al.  Enhancement of modulation bandwidth in InGaAs strained‐layer single quantum well lasers , 1989 .

[5]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[6]  Tawee Tanbun-Ek,et al.  On the temperature sensitivity of semiconductor lasers , 1992 .

[7]  P. Daniel Dapkus,et al.  Polarization insensitive strained quantum well gain medium for lasers and optical amplifiers , 1992 .

[8]  R. A. Abram,et al.  Auger recombination in a quantum well heterostructure , 1983 .

[9]  W. Rideout,et al.  Well-barrier hole burning in quantum well lasers , 1991, IEEE Photonics Technology Letters.

[10]  R. W. Glew,et al.  Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures , 1992 .

[11]  alpha factor improvements in high-speed p doped In/sub 0.35/Ga /sub 0.65/As/GaAs MQW lasers , 1993 .

[12]  L. Coldren,et al.  Chapter 1 – OPTICAL GAIN IN III–V BULK AND QUANTUM WELL SEMICONDUCTORS , 1993 .

[13]  Y. H. Zhuang,et al.  Direct measurement of linewidth enhancement factors in quantum well lasers of different quantum well barrier heights , 1993 .

[14]  I. Joindot,et al.  Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55 mu m semiconductor lasers , 1993 .

[15]  B. N. Gomatam,et al.  Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers , 1990 .

[16]  Ferdinand Scholz,et al.  Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum‐well lasers , 1993 .

[17]  M. Ettenberg,et al.  Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers , 1990, IEEE Photonics Technology Letters.

[18]  R. Eppenga,et al.  New k.p theory for GaAs/Ga 1-x A1 x As-type quantum wells , 1987 .

[19]  L. Tiemeijer,et al.  Improved performance of compressively as well as tensile strained quantum‐well lasers , 1992 .

[20]  Kohroh Kobayashi,et al.  Room-temperature CW operation of AlGaInP double-heterostructure visible lasers , 1985 .

[21]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[22]  Maurice Bernard,et al.  Laser Conditions in Semiconductors , 1961, 1961.

[23]  C. van der Poel,et al.  Effect of strain on the threshold current of GaInP/AlGaInP quantum well lasers emitting at 633 nm , 1992, 13th IEEE International Semiconductor Laser Conference.

[24]  R. B. Lauer,et al.  Extremely high-frequency (24 GHz) InGaAsP diode lasers with excellent modulation efficiency , 1990 .

[25]  P. D. Dapkus,et al.  Effect of Auger recombination and differential gain on the temperature sensitivity of 1.5 μm quantum well lasers , 1993 .

[26]  I. J. Fritz,et al.  Light‐hole conduction in InGaAs/GaAs strained‐layer superlattices , 1985 .

[27]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[28]  James J. Coleman,et al.  Strained-layer quantum well heterostructure lasers , 1992 .

[29]  John E. Bowers,et al.  High-speed InGaAsP constricted-mesa lasers , 1986 .

[30]  Eoin P. O'Reilly,et al.  Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers , 1993 .

[31]  Thorvald G. Andersson,et al.  Variation of the critical layer thickness with In content in strained InxGa1−xAs‐GaAs quantum wells grown by molecular beam epitaxy , 1987 .

[32]  L. Tiemeijer,et al.  Low-pressure MOVPE growth and characterization of strained-layer InGaAs-InGaAsP , 1992 .

[33]  F. Pollak Chapter 2 Effects of Homogeneous Strain on the Electronic and Vibrational Levels in Semiconductors , 1990 .

[34]  L. F. Tiemeijer,et al.  Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers , 1994 .

[35]  E. O’Reilly,et al.  Important loss mechanisms in visible lasers revealed by hydrostatic pressure , 1993 .

[36]  Eoin P. O'Reilly,et al.  Improved performance of long-wavelength strained bulk-like semiconductor lasers , 1993 .

[37]  E. O’Reilly,et al.  Improved dynamics and linewidth enhancement factor in strained-layer lasers , 1989 .

[38]  Govind P. Agrawal,et al.  Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers , 1987 .

[39]  P. Tasker,et al.  Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers , 1993 .

[40]  E. O’Reilly Valence band engineering in strained-layer structures , 1989 .

[41]  C. Y. Chen,et al.  Low threshold 1.5 mu m tensile-strained single quantum well lasers , 1991 .

[42]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[43]  L. A. Coldren,et al.  Extremely wide modulation bandwidth in a low threshold current strained quantum well laser , 1988 .

[44]  P. Tasker,et al.  Optical and microwave performance of GaAs-AlGaAs and strained layer InGaAs-GaAs-AlGaAs graded index separate confinement heterostructure single quantum well lasers , 1990, IEEE Photonics Technology Letters.

[45]  10 Gbit/s low chirp performance of strained layer multiquantum well DFB laser , 1991 .

[46]  R. K. Bertaska,et al.  Degradation phenomenology in (Al)GaAs quantum well lasers , 1988 .

[47]  K. Magari,et al.  Polarization insensitive traveling wave type amplifier using strained multiple quantum well structure , 1990, IEEE Photonics Technology Letters.

[48]  Larry A. Coldren,et al.  High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping , 1991 .

[49]  Rajaram Bhat,et al.  Measurement of nonradiative Auger and radiative recombination rates in strained‐layer quantum‐well systems , 1993 .

[50]  Randall S. Geels,et al.  High power, low threshold, singlemode 630 nm laser diodes , 1992 .

[51]  A. Haug,et al.  Phonon-assisted auger recombination in quantum well semiconductors , 1990 .

[52]  P. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  J. W. Matthews,et al.  Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers , 1976 .

[54]  F. Frank,et al.  One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  S. Hausser,et al.  Auger recombination in bulk and quantum well InGaAs , 1990 .

[56]  L. F. Tiemeijer,et al.  Effect of free carriers on the linewidth enhancement factor of InGaAs/InP (strained‐layer) multiple quantum well lasers , 1992 .

[57]  E. O’Reilly,et al.  Improved performance due to suppression of spontaneous emission in tensile-strain semiconductor lasers , 1991 .

[58]  T. V. Dongen,et al.  Elimination of intervalence band absorption in compressively strained InGaAs/InP 1.5 mu m MQW lasers observed by hydrostatic pressure measurements , 1992 .

[59]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[60]  L. F. Tiemeijer,et al.  Polarization insensitive multiple quantum well laser amplifiers for the 1300 nm window , 1993 .

[61]  E. O’Reilly,et al.  Gain and radiative current density in InGaAs/lnGaAsP lasers with electrostatically confined electron states , 1994 .

[62]  A. Haug Relations between theT0 values of bulk and quantum-well GaAs , 1987 .

[63]  G. Osbourn Strained-layer superlattices: A brief review , 1986 .

[64]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[65]  E. O’Reilly,et al.  Semiconductor lasers take the strain , 1992 .

[66]  Tawee Tanbun-Ek,et al.  25 GHz bandwidth 1.55 mu m GaInAsP p-doped strained multiquantum-well lasers , 1992 .

[67]  R. Simes,et al.  Induced electrostatic confinement of the electron gas in tensile strained InGaAs/InGaAsP quantum well lasers , 1992 .

[68]  A. Haug Auger recombination in quantum well InGaAs , 1990 .

[69]  G. L. Harnagel,et al.  Accelerated aging of 100‐mW cw multiple‐stripe GaAlAs lasers grown by metalorganic chemical vapor deposition , 1985 .

[70]  M. G. Burt,et al.  Linewidth enhancement factor for quantum-well lasers , 1984 .

[71]  Kazuhisa Uomi,et al.  Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory , 1990 .

[72]  N. Chinone,et al.  Linewidth enhancement factor in strained quantum well lasers , 1989, IEEE Photonics Technology Letters.