Adaptive Elastic-Net for General Single-Index Regression Models

In this article, we study a general single-index model with diverging number of predictors by using the adaptive Elastic-Net inverse regression method. The proposed method not only can estimate the direction of index and select important variables simultaneously, but also can avoid to estimate the unknown link function through nonparametric method. Under some regularity conditions, we show that the proposed estimators enjoy the so-called oracle property.

[1]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[2]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[3]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[4]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[5]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[6]  Wolfgang Härdle,et al.  Sliced inverse regression for dimension reduction. Comments. Reply , 1991 .

[7]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[8]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[9]  Li-Xing Zhu,et al.  Nonconcave penalized inverse regression in single-index models with high dimensional predictors , 2009, J. Multivar. Anal..

[10]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[11]  R. Cook,et al.  Sufficient Dimension Reduction via Inverse Regression , 2005 .

[12]  H. Zha,et al.  Contour regression: A general approach to dimension reduction , 2005, math/0508277.

[13]  Hao Helen Zhang,et al.  ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.

[14]  Ker-Chau Li,et al.  Regression Analysis Under Link Violation , 1989 .

[15]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[16]  Lixing Zhu,et al.  NONCONCAVE PENALIZED M-ESTIMATION WITH A DIVERGING NUMBER OF PARAMETERS , 2011 .

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .