Adaptive Elastic-Net for General Single-Index Regression Models
暂无分享,去创建一个
[1] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[2] Ker-Chau Li,et al. On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .
[3] Ker-Chau Li. Sliced inverse regression for dimension reduction (with discussion) , 1991 .
[4] Jianqing Fan,et al. Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.
[5] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[6] Wolfgang Härdle,et al. Sliced inverse regression for dimension reduction. Comments. Reply , 1991 .
[7] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[8] A. E. Hoerl,et al. Ridge Regression: Applications to Nonorthogonal Problems , 1970 .
[9] Li-Xing Zhu,et al. Nonconcave penalized inverse regression in single-index models with high dimensional predictors , 2009, J. Multivar. Anal..
[10] R. H. Moore,et al. Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.
[11] R. Cook,et al. Sufficient Dimension Reduction via Inverse Regression , 2005 .
[12] H. Zha,et al. Contour regression: A general approach to dimension reduction , 2005, math/0508277.
[13] Hao Helen Zhang,et al. ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.
[14] Ker-Chau Li,et al. Regression Analysis Under Link Violation , 1989 .
[15] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[16] Lixing Zhu,et al. NONCONCAVE PENALIZED M-ESTIMATION WITH A DIVERGING NUMBER OF PARAMETERS , 2011 .
[17] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[18] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .