The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties

This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.

[1]  S. Khanna,et al.  Progress in the Development of a Systematic Nanoperiodic Framework for Unifying Nanoscience , 2020 .

[2]  Tetsuya Kambe,et al.  New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers. , 2020, Chemical reviews.

[3]  David B Ascher,et al.  dendPoint: a web resource for dendrimer pharmacokinetics investigation and prediction , 2019, Scientific Reports.

[4]  J. Reymond,et al.  Fluorescence Imaging of Bacterial Killing by Antimicrobial Peptide Dendrimer G3KL. , 2019, ACS infectious diseases.

[5]  S. Dhawan,et al.  Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis. , 2019, Chemical reviews.

[6]  Ling Peng,et al.  Poly(amidoamine) dendrimers: covalent and supramolecular synthesis , 2019, Materials Today Chemistry.

[7]  Junpo He,et al.  Thermally Responsive Unimolecular Nanoreactors from Amphiphilic Dendrimer-Like Copolymer Prepared via Anionic Polymerization and Cross Metathesis Reaction , 2019, Macromolecules.

[8]  Min Liu,et al.  Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. , 2019, Accounts of chemical research.

[9]  J. Reymond,et al.  Stereoselective pH Responsive Peptide Dendrimers for siRNA Transfection. , 2019, Bioconjugate chemistry.

[10]  Chunying Chen,et al.  The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. , 2019, Accounts of chemical research.

[11]  Michael R Hamblin,et al.  Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. , 2019, Nanomedicine.

[12]  M. Grinstaff,et al.  Polymer–drug conjugate therapeutics: advances, insights and prospects , 2018, Nature Reviews Drug Discovery.

[13]  S. Fonash Unique features of the nano-scale , 2018, Journal of Nanoparticle Research.

[14]  K. Müllen,et al.  Expanding the limits of synthetic macromolecular chemistry through Polyphenylene Dendrimers , 2018, Journal of Nanoparticle Research.

[15]  A. Lipkowski,et al.  Bioinspired Amphiphilic Peptide Dendrimers as Specific and Effective Compounds against Drug Resistant Clinical Isolates of E. coli. , 2018, Bioconjugate chemistry.

[16]  A. Chauhan,et al.  Engineering of “critical nanoscale design parameters” (CNDPs) in PAMAM dendrimer nanoparticles for drug delivery applications , 2018, Journal of Nanoparticle Research.

[17]  Carola Díaz,et al.  Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin , 2018, Pharmaceutical development and technology.

[18]  R. Sanyal,et al.  Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates † , 2018, Molecules.

[19]  H. Swai,et al.  Polyamidoamine Dendrimers for Enhanced Solubility of Small Molecules and Other Desirable Properties for Site Specific Delivery: Insights from Experimental and Computational Studies , 2018, Molecules.

[20]  Marwa Masoud,et al.  Gallic acid–PAMAM and gallic acid–phospholipid conjugates, physicochemical characterization and in vivo evaluation , 2018, Pharmaceutical development and technology.

[21]  Pramod Kumar,et al.  Bendamustine-PAMAM Conjugates for Improved Apoptosis, Efficacy, and in Vivo Pharmacokinetics: A Sustainable Delivery Tactic. , 2017, Molecular pharmaceutics.

[22]  Keerti Jain,et al.  Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. , 2017, Drug discovery today.

[23]  A. D'emanuele,et al.  In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates , 2017, Molecules.

[24]  M. P. Khinchi,et al.  Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. , 2017, International journal of pharmaceutics.

[25]  A. Valente,et al.  PAMAM dendrimer hydrogel film—biocompatible material to an efficient dermal delivery of drugs , 2017, Journal of Nanoparticle Research.

[26]  Qiang Shen,et al.  Cancer drug delivery in the nano era: An overview and perspectives , 2017, Oncology reports.

[27]  Sonam Choudhary,et al.  Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules , 2017, Front. Pharmacol..

[28]  D. Tomalia,et al.  Engineering dendrimers to produce dendrimer dipole excitation based terahertz radiation sources suitable for spectrometry, molecular and biomedical imaging. , 2017, Nanoscale horizons.

[29]  Mohammad Ramezani,et al.  Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. , 2017, International journal of pharmaceutics.

[30]  O. Yesil‐Celiktas,et al.  Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. , 2017, Analytical biochemistry.

[31]  A. Chauhan,et al.  Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology , 2017, Molecules.

[32]  Deep Pooja,et al.  Poly (amidoamine) dendrimer‐mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[33]  F. Sarkar,et al.  Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures. , 2016, Journal of colloid and interface science.

[34]  X. Loh,et al.  Recent development of unimolecular micelles as functional materials and applications , 2016 .

[35]  F. Nabavizadeh,et al.  Evaluation of Nanocarrier Targeted Drug Delivery of Capecitabine-PAMAM Dendrimer Complex in a Mice Colorectal Cancer Model. , 2016, Acta medica Iranica.

[36]  K. Müllen,et al.  Dimensional Evolution of Polyphenylenes: Expanding in All Directions. , 2016, Chemical reviews.

[37]  Hu Yang Targeted nanosystems: Advances in targeted dendrimers for cancer therapy. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[38]  S. Khanna,et al.  A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables. , 2016, Chemical reviews.

[39]  Yiyun Cheng,et al.  Structure-activity relationship of dendrimers engineered with twenty common amino acids in gene delivery. , 2016, Acta biomaterialia.

[40]  Yuanjie Liu,et al.  Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[41]  Sanjeev Banerjee,et al.  Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. , 2015, Colloids and surfaces. B, Biointerfaces.

[42]  R. Haag,et al.  Dendritic core-shell systems as soft drug delivery nanocarriers. , 2015, Biotechnology advances.

[43]  S. Nyandoro,et al.  Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement , 2015, International journal of molecular sciences.

[44]  Mario Ficker,et al.  Guest-Host Chemistry with Dendrimers—Binding of Carboxylates in Aqueous Solution , 2015, PloS one.

[45]  B. Pałecz,et al.  Spectroscopic and calorimetric studies of formation of the supramolecular complexes of PAMAM G5-NH₂ and G5-OH dendrimers with 5-fluorouracil in aqueous solution. , 2015, International journal of pharmaceutics.

[46]  R. Gómez,et al.  HIV-1 antiviral behavior of anionic PPI metallo-dendrimers with EDA core. , 2015, European journal of medicinal chemistry.

[47]  K. Müllen,et al.  The polar side of polyphenylene dendrimers. , 2015, Chemical Society reviews.

[48]  Qiang Zhang,et al.  Surface-engineered dendrimers in gene delivery. , 2015, Chemical reviews.

[49]  Shaoyu Lü,et al.  Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery , 2015 .

[50]  O. Taratula,et al.  Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. , 2015, Nanoscale.

[51]  Vijay Mishra,et al.  The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[52]  S. Kannan,et al.  Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications , 2014, Journal of internal medicine.

[53]  Two birds with one stone: dendrimer surface engineering enables tunable periphery hydrophobicity and rapid endosomal escape. , 2014, Chemical communications.

[54]  S. Prabhu,et al.  Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis? , 2014, Drug discovery today.

[55]  Dzmitry G. Shcharbin,et al.  Recent Patents in Dendrimers for Nanomedicine: Evolution 2014 , 2014 .

[56]  Kimihisa Yamamoto,et al.  Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. , 2014, Accounts of chemical research.

[57]  Keerti Jain,et al.  Dendrimer as nanocarrier for drug delivery , 2014 .

[58]  J. Majoral,et al.  Dendrimer space exploration: an assessment of dendrimers/dendritic scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. , 2014, Chemical reviews.

[59]  J. Majoral,et al.  Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. , 2013, Advanced drug delivery reviews.

[60]  J. Solecka,et al.  Novel Antimicrobial Peptide Dendrimers with Amphiphilic Surface and Their Interactions with Phospholipids — Insights from Mass Spectrometry , 2013, Molecules.

[61]  A. Fattori,et al.  Anionic sulfonated and carboxylated PPI dendrimers with the EDA core: synthesis and characterization of selective metal complexing agents. , 2013, Dalton transactions.

[62]  B. Orr,et al.  Regio-specific size, shape and surface chemistry designed dendrimers based on differentiated dendroid templates , 2013 .

[63]  Bo Zhang,et al.  Facile Synthesis of Polyester Dendrimers as Drug Delivery Carriers , 2013 .

[64]  Elizabeth R Gillies,et al.  Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. , 2012, Advanced drug delivery reviews.

[65]  Chelsea E T Stowell,et al.  Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. , 2012, Biomacromolecules.

[66]  T. Xu,et al.  NMR insights into dendrimer-based host-guest systems. , 2012, Chemical reviews.

[67]  Yanjun Zhao,et al.  Dendrimer-mediated drug delivery to the skin , 2012 .

[68]  L. Kaminskas,et al.  Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. , 2012, Molecular pharmaceutics.

[69]  D. Tomalia Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs) , 2012 .

[70]  Xianghui Zeng,et al.  Hyperbranched copolymer micelles as delivery vehicles of doxorubicin in breast cancer cells , 2012 .

[71]  D. Tomalia,et al.  Dendrimers, Dendrons, and Dendritic Polymers: A quantized building block concept leading to a new nano-periodic system , 2012 .

[72]  Jiahai Zhang,et al.  Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity , 2011, International journal of nanomedicine.

[73]  B. Basu,et al.  Solubility of aceclofenac in polyamidoamine dendrimer solutions , 2011, International journal of pharmaceutical investigation.

[74]  T. Kissel,et al.  Nanoparticles for paclitaxel delivery: a comparative study of different types of dendritic polyesters and their degradation behavior. , 2011, International journal of pharmaceutics.

[75]  Lei Zhu,et al.  Synthesis and Unimolecular Micelles of Amphiphilic Dendrimer-like Star Polymer with Various Functional Surface Groups , 2011 .

[76]  Jan Jezek,et al.  Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications , 2011, Amino Acids.

[77]  N. K. Jain,et al.  Development and characterization of triazine based dendrimers for delivery of antitumor agent. , 2010, Journal of nanoscience and nanotechnology.

[78]  A. Danani,et al.  The influence of dendron's architecture on the "rigid" and "flexible" behaviour in binding DNA--a modelling study. , 2010, Physical chemistry chemical physics : PCCP.

[79]  R. Konwar,et al.  Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. , 2010, International journal of pharmaceutics.

[80]  É. Boisselier,et al.  Interactions and encapsulation of vitamins C, B3, and B6 with dendrimers in water. , 2010, Chemistry.

[81]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[82]  L. Tetley,et al.  The molecular shape of poly(propylenimine) dendrimer amphiphiles has a profound effect on their self assembly. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[83]  D. Tomalia Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis , 2010 .

[84]  J. Sheng,et al.  Co-delivery of as-miR-21 and 5-FU by Poly(amidoamine) Dendrimer Attenuates Human Glioma Cell Growth in Vitro , 2010, Journal of biomaterials science. Polymer edition.

[85]  T. Xu,et al.  Host-guest chemistry of dendrimer-drug complexes. 3. Competitive binding of multiple drugs by a single dendrimer for combination therapy. , 2009, The journal of physical chemistry. B.

[86]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[87]  N. K. Jain,et al.  Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. , 2009, Biomaterials.

[88]  Venkata Vamsi K Venuganti,et al.  Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation, and concentration. , 2009, Journal of pharmaceutical sciences.

[89]  Scott H. Medina,et al.  Dendrimers as carriers for delivery of chemotherapeutic agents. , 2009, Chemical reviews.

[90]  Donald A. Tomalia,et al.  In quest of a systematic framework for unifying and defining nanoscience , 2009, Journal of Nanoparticle Research.

[91]  S. Svenson,et al.  Dendrimers for enhanced drug solubilization. , 2008, Nanomedicine.

[92]  T. Xu,et al.  Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies. , 2008, European journal of medicinal chemistry.

[93]  M. Grinstaff,et al.  Therapeutic and diagnostic applications of dendrimers for cancer treatment. , 2008, Advanced drug delivery reviews.

[94]  Rongqin Huang,et al.  Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. , 2008, Journal of pharmaceutical sciences.

[95]  M. M. Villiers,et al.  Effect of polyamidoamine (PAMAM) dendrimers on the in vitro release of water-insoluble nifedipine from aqueous gels , 2005, AAPS PharmSciTech.

[96]  Barrie Wilkinson,et al.  Drug discovery beyond the 'rule-of-five'. , 2007, Current opinion in biotechnology.

[97]  Hamidreza Ghandehari,et al.  Endocytosis and Interaction of Poly (Amidoamine) Dendrimers with Caco-2 Cells , 2007, Pharmaceutical Research.

[98]  V. Gionis,et al.  Molecular interactions between dimethoxycurcumin and Pamam dendrimer carriers. , 2007, International journal of pharmaceutics.

[99]  K. Müllen,et al.  Precision host–guest chemistry of polyphenylene dendrimers , 2007 .

[100]  Prakash V Diwan,et al.  Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. , 2007, Journal of biomedical materials research. Part A.

[101]  T. Xu,et al.  Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. , 2007, European journal of medicinal chemistry.

[102]  Xu Tongwen,et al.  Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. , 2007 .

[103]  T. Xu,et al.  Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. , 2007, European journal of medicinal chemistry.

[104]  Xiaomin Wang,et al.  Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. , 2007, Journal of pharmaceutical sciences.

[105]  Mark W Grinstaff,et al.  Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. , 2006, Cancer research.

[106]  L. Hajba,et al.  Three generations of α,γ-diaminobutyric acid modified poly(propyleneimine) dendrimers and their cisplatin-type platinum complexes , 2006 .

[107]  F. Szoka,et al.  A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas , 2006, Proceedings of the National Academy of Sciences.

[108]  Umesh Gupta,et al.  Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. , 2006, Biomacromolecules.

[109]  Patrice Hildgen,et al.  Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. , 2006, Bioconjugate chemistry.

[110]  Antony D'Emanuele,et al.  Dendrimer-drug interactions. , 2005, Advanced drug delivery reviews.

[111]  M. D. de Villiers,et al.  Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. , 2005, International journal of pharmaceutics.

[112]  Xu Tongwen,et al.  Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. , 2005, European journal of medicinal chemistry.

[113]  Costas Demetzos,et al.  Doxorubicin-PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. , 2005, International journal of pharmaceutics.

[114]  N. K. Jain,et al.  Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. , 2005, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[115]  S. Thayumanavan,et al.  Dendrimeric micelles for controlled drug release and targeted delivery. , 2005, Molecular pharmaceutics.

[116]  더글라스 알. 스완슨,et al.  Dendritic polymers with enhanced amplification and interior functionality , 2005 .

[117]  M. Adeli,et al.  Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. , 2005, Biomaterials.

[118]  S. Thayumanavan,et al.  Dendrimers with both polar and apolar nanocontainer characteristics. , 2004, Journal of the American Chemical Society.

[119]  Kinam Park,et al.  Hydrotropic dendrimers of generations 4 and 5: synthesis, characterization, and hydrotropic solubilization of paclitaxel. , 2004, Bioconjugate chemistry.

[120]  M. D. de Villiers,et al.  The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. , 2004, International journal of pharmaceutics.

[121]  J. Fréchet,et al.  Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. , 2004, Journal of the American Chemical Society.

[122]  E. Wang,et al.  One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters , 2004 .

[123]  E. Simanek,et al.  Reduction of drug toxicity using dendrimers based on melamine. , 2004, Molecular pharmaceutics.

[124]  N. Jayaraman,et al.  Water-soluble dendrimers as photochemical reaction media: chemical behavior of singlet and triplet radical pairs inside dendritic reaction cavities. , 2004, Journal of the American Chemical Society.

[125]  E. Simanek,et al.  Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. , 2004, Journal of the American Chemical Society.

[126]  Hu Yang,et al.  Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. , 2004, Journal of colloid and interface science.

[127]  Kinam Park,et al.  Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[128]  Mark W Grinstaff,et al.  Dendritic molecular capsules for hydrophobic compounds. , 2003, Journal of the American Chemical Society.

[129]  Sujatha Kannan,et al.  Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. , 2003, International journal of pharmaceutics.

[130]  A. Beezer,et al.  Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives , 2003 .

[131]  S. Jain,et al.  A PEGylated dendritic nanoparticulate carrier of fluorouracil. , 2003, International journal of pharmaceutics.

[132]  Mary J Cloninger,et al.  Biological applications of dendrimers. , 2002, Current opinion in chemical biology.

[133]  J. Fréchet,et al.  Discovery of dendrimers and dendritic polymers: A brief historical perspective* , 2002 .

[134]  J. Tam,et al.  Peptide dendrimers: applications and synthesis. , 2002, Journal of biotechnology.

[135]  S. Jain,et al.  Dendrimer grafts for delivery of 5-fluorouracil. , 2002, Die Pharmazie.

[136]  Amy S. H. King,et al.  The effect of size on the rate of an aminolysis reaction using a series of amine terminated PAMAM dendrimers , 2002 .

[137]  Amy S. H. King,et al.  Catalysis inside dendrimers. , 2002, Chemical Society reviews.

[138]  Yi-An Lu,et al.  Antimicrobial dendrimeric peptides. , 2002, European journal of biochemistry.

[139]  A. Malliaris,et al.  Study of Poly(propylene imine) Dendrimers in Water, by Exciplex Formation , 2002 .

[140]  A. Caminade,et al.  Phosphorus dendrimers as new tools to deliver active substances , 2001 .

[141]  D. Tomalia,et al.  Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. , 2001, Drug discovery today.

[142]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[143]  E. W. Meijer,et al.  Synthesis and properties of new thiourea-functionalized poly(propylene imine) dendrimers and their role as hosts for urea functionalized guests. , 2001, The Journal of organic chemistry.

[144]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic polymers , 2001 .

[145]  K. Kono,et al.  Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. , 2000, Bioconjugate chemistry.

[146]  J. Parquette,et al.  Folding Dendrons: The Development of Solvent-, Temperature-, and Generation-Dependent Chiral Conformational Order in Intramolecularly Hydrogen-Bonded Dendrons , 2000 .

[147]  Deák,et al.  Silver Nanoparticles by PAMAM-Assisted Photochemical Reduction of Ag(+). , 2000, Journal of colloid and interface science.

[148]  Meijer,et al.  The Localization of Guests in Water-Soluble Oligoethyleneoxy-Modified Poly(propylene imine) Dendrimers This work was supported by the Netherlands Foundation for Chemical Research (CW), with financial aid from the Netherlands Organisation for Scientific Research (NWO). The authors thank Stefan Mesker , 2000, Angewandte Chemie.

[149]  N. McKeown,et al.  Polyamidoamine Starburst dendrimers as solubility enhancers. , 2000, International journal of pharmaceutics.

[150]  K. Kono,et al.  Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[151]  A. Suzuki,et al.  Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver , 2000 .

[152]  E. W. Meijer,et al.  Host-Guest Chemistry of Dendritic Molecules , 2000 .

[153]  R. Valluzzi,et al.  Electrostatic Multilayer Deposition of a Gold−Dendrimer Nanocomposite , 1999 .

[154]  R. Valluzzi,et al.  Formation of Silver and Gold Dendrimer Nanocomposites , 1999 .

[155]  R. Duncan,et al.  Dendrimer-platinate: a novel approach to cancer chemotherapy. , 1999, Anti-cancer drugs.

[156]  E. W. Meijer,et al.  Poly(propylene imine) dendrimers , 1999 .

[157]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[158]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[159]  Jeffrey S. Moore Shape-Persistent Molecular Architectures of Nanoscale Dimension , 1997 .

[160]  N. Turro,et al.  Characterization of Starburst Dendrimers by the EPR Technique. Copper(II) Ions Binding Full-Generation Dendrimers , 1997 .

[161]  E. Meijer,et al.  The dendritic box, shape-selective liberation of encapsulated guests , 1995 .

[162]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[163]  E. Mahan,et al.  Hydraamphiphiles: Novel Linear Dendritic Block Copolymer Surfactants , 1994 .

[164]  D. Cram,et al.  Container Molecules And Their Guests , 1994 .

[165]  R. Mülhaupt,et al.  Polynitrile‐ and Polyamine‐Functional Poly(trimethylene imine) Dendrimers , 1993 .

[166]  E. W. Meijer,et al.  Poly(propylene imine) Dendrimers: Large‐Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations , 1993 .

[167]  C. Hawker,et al.  Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents , 1993 .

[168]  Andrew L. Johnson,et al.  Alkane Cascade Polymers Possessing Micellar Topology: Micellanoic Acid Derivatives , 1991 .

[169]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[170]  William A. Goddard,et al.  Starburst dendrimers. 5. Molecular shape control , 1989 .

[171]  D. Tomalia,et al.  Starburst dendrimers. 4. Covalently fixed unimolecular assemblages reiminiscent of spheroidal micelles , 1987 .

[172]  D. Tomalia,et al.  Starburst dendrimers. III. The importance of branch junction symmetry in the development of topological shell molecules , 1987 .

[173]  Michael B. Hall,et al.  Dendritic macromolecules: synthesis of starburst dendrimers , 1986 .

[174]  S. Branca,et al.  The synthesis of pentaprismane , 1986 .

[175]  George R. Newkome,et al.  Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol , 1985 .

[176]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[177]  L. Paquette,et al.  Total synthesis of dodecahedrane , 1983 .

[178]  P. Gennes,et al.  Statistics of « starburst » polymers , 1983 .

[179]  D. Cram Cavitands: Organic Hosts with Enforced Cavities , 1983, Science.

[180]  S. M. Aharoni,et al.  Size and solution properties of globular tert-butyloxycarbonyl-poly(α,iε-L-lysine) , 1982 .

[181]  E. Buhleier,et al.  "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies , 1978 .

[182]  T. W. Cole,et al.  The Cubane System , 1964 .