Extended r-spin theory in all genera and the discrete KdV hierarchy

In this paper we construct a family of cohomology classes on the moduli space of stable curves generalizing Witten's $r$-spin classes. They are parameterized by a phase space which has one extra dimension and in genus $0$ they correspond to the extended $r$-spin classes appearing in the computation of intersection numbers on the moduli space of open Riemann surfaces, while when restricted to the usual smaller phase space, they give in all genera the product of the top Hodge class by the $r$-spin class. They do not form a cohomological field theory, but a more general object which we call F-CohFT, since in genus $0$ it corresponds to a flat F-manifold. For $r=2$ we prove that the partition function of such F-CohFT gives a solution of the discrete KdV hierarchy. Moreover the same integrable system also appears as its double ramification hierarchy.

[1]  Y. Manin F-manifolds with flat structure and Dubrovin's duality , 2004, math/0402451.

[2]  R. Pandharipande,et al.  Relations on $\overline {\mathcal {M}}_{g,n}$ via $3$-spin structures , 2014 .

[3]  Jérémy Guéré A Landau--Ginzburg mirror theorem without concavity , 2013, 1307.5070.

[4]  Jonathan Wise,et al.  Stable maps to rational curves and the relative Jacobian , 2013, 1310.5981.

[5]  A. Brini,et al.  Rational reductions of the 2D-Toda hierarchy and mirror symmetry , 2014, Journal of the European Mathematical Society.

[6]  A. Arsie,et al.  Flat $F$-manifolds, Miura invariants and integrable systems of conservation laws , 2017, 1709.10300.

[7]  E. Frenkel Deformations of the KdV hierarchy and related soliton equations , 1995, q-alg/9511003.

[8]  A. Buryak,et al.  DR/DZ equivalence conjecture and tautological relations , 2017, Geometry & Topology.

[9]  A. Chiodo The Witten top Chern class via -theory , 2006 .

[10]  E. Witten Algebraic Geometry Associated with Matrix Models of Two Dimensional Gravity , 1993 .

[11]  B. Dubrovin,et al.  Tau-Structure for the Double Ramification Hierarchies , 2016, Communications in Mathematical Physics.

[12]  A. Buryak,et al.  Dubrovin-Zhang hierarchy for the Hodge integrals , 2013, 1308.5716.

[13]  S. Shadrin,et al.  A polynomial bracket for the Dubrovin--Zhang hierarchies , 2010, 1009.5351.

[14]  R. Pandharipande,et al.  New topological recursion relations , 2008, 0805.4829.

[15]  Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants , 2001, math/0108160.

[16]  Y. Ruan,et al.  BCFG Drinfeld–Sokolov hierarchies and FJRW-theory , 2013, 1312.7227.

[17]  J'er'emy Gu'er'e Hodge integrals in FJRW theory , 2015, 1509.07047.

[18]  R. Hain Normal Functions and the Geometry of Moduli Spaces of Curves , 2011, 1102.4031.

[19]  Tyler Jarvis,et al.  The Witten equation, mirror symmetry and quantum singularity theory , 2007, 0712.4021.

[20]  Ran J. Tessler,et al.  Refined open intersection numbers and the Kontsevich-Penner matrix model , 2017, 1702.02319.

[21]  A. Buryak,et al.  Double Ramification Cycles and Integrable Hierarchies , 2014, 1403.1719.

[22]  T. Mochizuki The Virtual Class of the Moduli Stack of Stable r-Spin Curves , 2006 .

[23]  Ran J. Tessler,et al.  Closed extended r-spin theory and the Gelfand–Dickey wave function , 2017, Journal of Geometry and Physics.

[24]  A. Brini,et al.  Integrable hierarchies and the mirror model of local CP1 , 2011, 1105.4508.

[25]  R. Pandharipande,et al.  Hodge integrals and Gromov-Witten theory , 1998 .

[26]  B. Dubrovin,et al.  Integrable Systems of Double Ramification Type , 2016, International Mathematics Research Notices.

[27]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .

[28]  P. Rossi Integrability, Quantization and Moduli Spaces of Curves , 2017, 1703.00232.

[29]  A. Buryak,et al.  Towards a description of the double ramification hierarchy for Witten's $r$-spin class , 2015, 1507.05882.

[30]  A. Buryak,et al.  Recursion Relations for Double Ramification Hierarchies , 2014, 1411.6797.

[31]  D. Zvonkine,et al.  Twisted r-spin potential and Givental’s quantization , 2009 .

[32]  A. Veselov,et al.  Dressing chains and the spectral theory of the Schrödinger operator , 1993 .

[33]  Tyler Jarvis,et al.  Gravitational Descendants and the Moduli Space of Higher Spin Curves , 2000, math/0009066.

[34]  Ran J. Tessler,et al.  Intersection theory on moduli of disks, open KdV and Virasoro , 2014, 1409.2191.