Fully Coupled Fluid-Structure Algorithms for Aeroelasticity and Forced Vibration Induced Flutter

ABSTRACT Algorithms for Fluid-Structure Coupling techniques are investigated in the lime domain. The accurate prediction of the interaction requires consistency of the interface boundary conditions with the time levels of integration of the fluid and the structure equations. If staggered algorithms are used, the time delay causes non-physical energy dissipation in the system which modifies the calculated aeroelastic behaviour. In order to be compatible, the equations must be integrated simultaneously and implicitly. These techniques are tested on a standard aeroelastic airfoil problem, and then applied to the direct coupling of an assembly of 20 compressor blades performing torsional vibrations.

[1]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[2]  Charbel Farhat,et al.  Higher-Order Staggered and Subiteration Free Algorithms for Coupled Dynamic Aeroelasticity Problems , 1998 .

[3]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[4]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[5]  V. Carstens,et al.  Computation of the Unsteady Transonic Flow in Harmonically Oscillating Turbine Cascades Taking into Account Viscous Effects , 1996 .

[6]  Russ D. Rausch,et al.  Euler flutter analysis of airfoils using unstructured dynamic meshes , 1989 .

[7]  Joachim Belz,et al.  Numerical investigation of nonlinear fluid-structure interaction in vibrating compressor blades , 2000 .

[8]  Miguel R. Visbal,et al.  Accuracy and Coupling Issues of Aeroelastic Navier-Stokes Solutions on Deforming Meshes , 1997 .

[9]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[10]  Koji Isogai,et al.  On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing , 1979 .

[11]  Scott A. Morton,et al.  Implementation of a fully-implicit, aeroelastic Navier-Stokes solver , 1997 .

[12]  Heiko Körbächer,et al.  Steady-State and Time-Dependent Experimental Results of a NACA-3506 Cascade in an Annular Channel , 1996 .

[13]  H. Tijdeman,et al.  Investigations of the transonic flow around oscillating airfoils , 1977 .

[14]  F. Blom Considerations on the spring analogy , 2000 .

[15]  Patrick Le Tallec,et al.  Structures en grands déplacements couplées à des fluides en mouvement , 1996 .

[16]  Juan J. Alonso,et al.  Fully-implicit time-marching aeroelastic solutions , 1994 .

[17]  Charbel Farhat,et al.  Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems , 2000 .

[18]  Charbel Farhat,et al.  Structure-attached corotational fluid grid for transient aeroelasticcomputations , 1993 .

[19]  Charbel Farhat,et al.  Transient aeroelastic computations using multiple moving frames of reference , 1990 .

[20]  Joachim Belz,et al.  Numerical investigation of nonlinear fluid-structure interaction in vibrating compressor blades , 2001 .

[21]  Fort F. Felker,et al.  Direct solution of two-dimensional Navier-Stokes equations for static aeroelasticity problems , 1993 .

[22]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[23]  Albin Bölcs A Test Facility for the Investigation of Steady and Unsteady Transonic Flows in Annular Cascades , 1983 .

[24]  K. Isogai,et al.  Transonic dip mechanism of flutter of a sweptback wing. II , 1981 .

[25]  E. W. Morris No , 1923, The Hospital and health review.

[26]  Oddvar O. Bendiksen,et al.  Nonlinear aspects of the transonic aeroelastic stability problem , 1988 .

[27]  F. J. Blom,et al.  Analysis of Fluid-Structure Interaction by Means of Dynamic Unstructured Meshes , 1998 .

[28]  Miguel R. Visbal,et al.  Accuracy and Coupling Issues of Aeroelastic Navier-Stokes Solutions on Deforming Meshes , 1997 .

[29]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[30]  H. Tijdeman,et al.  Transonic Flow Past Oscillating Airfoils , 1980 .

[31]  Charbel Farhat,et al.  A conservative algorithm for exchanging aerodynamic and elastodynamic data in aeroelastic systems , 1998 .

[32]  Pénélope Leyland,et al.  Consistency Analysis of Fluid-Structure Interaction Algorithms , 1998 .

[33]  R. F. Warming,et al.  An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. [application to Eulerian gasdynamic equations , 1976 .