Benefits, costs and taxonomic distribution of marine phytoplankton body size

Phytoplankton cell or colony sizes range from 105 µm3) in lake phytoplankton and the absence of large (>103 µm3) green algae in marine plankton. Overall, size is one of the most important traits for the performance of phytoplankton, but it is overly simplistic to equate small size with metabolic advantages

[1]  U. Sommer,et al.  Do marine phytoplankton follow Bergmann's rule sensu lato? , 2017, Biological reviews of the Cambridge Philosophical Society.

[2]  U. Sommer,et al.  Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment. , 2016, Protist.

[3]  B. Cael The Good, the Bad, and the Tiny: A Simple, Mechanistic-Probabilistic Model of Virus-Nutrient Colimitation in Microbes , 2015, PloS one.

[4]  Emilio Marañón,et al.  Resource supply alone explains the variability of marine phytoplankton size structure , 2015 .

[5]  A. Lopez-Urrutia,et al.  Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth , 2015 .

[6]  E. Marañón Cell size as a key determinant of phytoplankton metabolism and community structure. , 2015, Annual review of marine science.

[7]  C. Pilskaln,et al.  Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas , 2014, PeerJ.

[8]  M. Melkonian,et al.  Picomonas judraskeda Gen. Et Sp. Nov.: The First Identified Member of the Picozoa Phylum Nov., a Widespread Group of Picoeukaryotes, Formerly Known as ‘Picobiliphytes’ , 2013, PloS one.

[9]  Emilio Marañón,et al.  Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. , 2013, Ecology letters.

[10]  K. Wirtz Mechanistic origins of variability in phytoplankton dynamics: Part I: niche formation revealed by a size-based model , 2013 .

[11]  C. Lovejoy,et al.  Distribution and Diversity of a Protist Predator Cryothecomonas (Cercozoa) in Arctic Marine Waters , 2012, The Journal of eukaryotic microbiology.

[12]  Mridul K. Thomas,et al.  Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton , 2012 .

[13]  U. Sommer,et al.  Experimental induction of a coastal spring bloom early in the year by intermittent high-light episodes , 2012 .

[14]  U. Sommer,et al.  Warming does not always benefit the small – Results from a plankton experiment , 2012 .

[15]  K. Wirtz Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO2 decline , 2011 .

[16]  H. Paerl,et al.  Vertical migration patterns of phytoflagellates in relation to light and nutrient availability in a shallow microtidal estuary. , 2011 .

[17]  A. Irwin,et al.  Evolutionary inheritance of elemental stoichiometry in phytoplankton , 2011, Proceedings of the Royal Society B: Biological Sciences.

[18]  Mridul K. Thomas,et al.  Linking traits to species diversity and community structure in phytoplankton , 2010, Hydrobiologia.

[19]  Zoe V. Finkel,et al.  Phytoplankton in a changing world: cell size and elemental stoichiometry , 2010 .

[20]  C. Klausmeier,et al.  Contrasting size evolution in marine and freshwater diatoms , 2009, Proceedings of the National Academy of Sciences.

[21]  S. Chisholm,et al.  Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters , 2009, Environmental microbiology.

[22]  Elena Litchman,et al.  Trait-Based Community Ecology of Phytoplankton , 2008 .

[23]  D. Harbour,et al.  Resource levels, allometric scaling of population abundance, and marine phytoplankton diversity , 2008 .

[24]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[25]  B. Ibelings,et al.  Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics , 2007, Hydrobiologia.

[26]  U. Sommer,et al.  Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming , 2006, Oecologia.

[27]  U. Sommer,et al.  Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton , 2006, Oecologia.

[28]  Thomas R. Anderson,et al.  Plankton functional type modelling : running before we can walk? , 2005 .

[29]  Xabier Irigoien,et al.  Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? , 2005 .

[30]  E. Saiz,et al.  The ciliate-copepod link in marine ecosystems , 2005 .

[31]  G. Lambert Ecology and natural history of the protochordates , 2005 .

[32]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[33]  T. F. Hansen,et al.  Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean) , 2004 .

[34]  Michael R. Landry,et al.  Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems , 2004 .

[35]  J. Boenigk,et al.  Bacterivory by heterotrophic flagellates: community structure and feeding strategies , 2002, Antonie van Leeuwenhoek.

[36]  E. Sherr,et al.  Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs , 1994, Microbial Ecology.

[37]  U. Sommer Some size relationships in phytoflagellate motility , 1988, Hydrobiologia.

[38]  J. C. Goldman,et al.  Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles , 1988, Hydrobiologia.

[39]  U. Sommer,et al.  Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level , 2004, Oecologia.

[40]  R. Bailey,et al.  Within- and among-lake variation in shell morphology of the freshwater clam Elliptio complanata (Bivalvia: Unionidae) from south-central Ontario lakes , 2004, Hydrobiologia.

[41]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[42]  T. F. Hansen,et al.  Do calanoid copepods suppress appendicularians in the coastal ocean , 2003 .

[43]  U. Sommer,et al.  Spatial and temporal distribution of Trichodesmium spp. in the stratified Gulf of Aqaba, Red Sea , 2002 .

[44]  U. Sommer,et al.  Copepoda – Cladocera – Tunicata: The role of three major mesozooplankton groups in pelagic food webs , 2002, Ecological Research.

[45]  E. Carpenter,et al.  Buoyancy Regulation and the Potential for Vertical Migration in the Oceanic Cyanobacterium Trichodesmium , 2002, Microbial Ecology.

[46]  T. F. Hansen,et al.  Complementary impact of copepods and cladocerans on phytoplankton , 2001 .

[47]  T. Nielsen,et al.  Annual population development and production by Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland , 2001 .

[48]  M. Sleigh,et al.  The Quantitative Occurrence of Different Taxa of Heterotrophic Flagellates in Southampton Water, U.K. , 2000 .

[49]  E. Schnepf,et al.  Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms , 2000, Helgoland Marine Research.

[50]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[51]  K. Wommack,et al.  Virioplankton: Viruses in Aquatic Ecosystems , 2000, Microbiology and Molecular Biology Reviews.

[52]  D. Jacobson,et al.  A Brief History of Dinoflagellate Feeding Research 1 , 1999 .

[53]  P. J. Hansen,et al.  Phagotrophic Mechanisms and Prey Selection in Free‐living Dinoflagellates 1 , 1999 .

[54]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[55]  M. Viitasalo,et al.  Prey switching behaviour in the planktonic copepod Acartia tonsa , 1996 .

[56]  H. Dam,et al.  Sedimentation of phytoplankton during a diatom bloom : Rates and mechanisms , 1996 .

[57]  J. K. Moore,et al.  Size-ascent rate relationships in positively buoyant marine diatoms , 1996 .

[58]  R. Riegman,et al.  A MODEL APPROACH FOR SIZE‐SELECTIVE COMPETITION OF MARINE PHYTOPLANKTON FOR FLUCTUATING NITRATE AND AMMONIUM 1 , 1996 .

[59]  E. Boss,et al.  Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion , 1996 .

[60]  F. Lipschultz,et al.  INTERNAL NITRATE CONCENTRATIONS IN SINGLE CELLS OF LARGE PHYTOPLANKTON FROM THE SARGASSO SEA 1 , 1995 .

[61]  E. Tang,et al.  The allometry of algal growth rates , 1995 .

[62]  P. K. Bjørnsen,et al.  The size ratio between planktonic predators and their prey , 1994 .

[63]  L. Legendre,et al.  Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages , 1994 .

[64]  R. Riegman,et al.  Size-differential control of phytoplankton and the structure of plankton communities , 1993 .

[65]  Thomas Kiørboe,et al.  Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs , 1993 .

[66]  H. Marchant,et al.  Uptake of sub-micrometre particles and dissolved organic materal by Antarctic choanoflagellates , 1993 .

[67]  U. Gaedke The size distribution of plankton biomass in a large lake and its seasonal variability , 1992 .

[68]  N. Vørs Heterotrophic Amoebae, Flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990 , 1992 .

[69]  K. Rothhaupt,et al.  The influence of spatial and temporal concentration gradients on phosphate partitioning between different size fractions of plankton: Further evidence and possible causes , 1992 .

[70]  P. Thompson,et al.  Does energy control the sinking rates of marine diatoms , 1992 .

[71]  R. Anadón,et al.  Appendicularian assemblages in a shelf area and their relationship with temperature , 1992 .

[72]  U. Passow Species-specific sedimentation and sinking velocities of diatoms , 1991 .

[73]  P. Tiselius,et al.  Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis , 1990 .

[74]  U. Sommer Maximal growth rates of Antarctic phytoplankton: Only weak dependence on cell size , 1989 .

[75]  A. Alldredge,et al.  Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates , 1989 .

[76]  U. Riebesell Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom , 1989 .

[77]  T. A. Villareal,et al.  Positive buoyancy in the oceanic diatom Rhizosolenia debyana H. Peragallo , 1988 .

[78]  D. Deibel Feeding mechanism and house of the appendicularian Oikopleura vanhoeffeni , 1986 .

[79]  U. Sommer,et al.  Long range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique) , 1986 .

[80]  P. R. Condy,et al.  Antarctic Nutrient Cycles and Food Webs , 1985, Springer Berlin Heidelberg.

[81]  U. Sommer Comparison between steady state and non-steady state competition: experiments with natural phytoplankton , 1985 .

[82]  S. Schnack Feeding by Euphausia superba and Copepod Species in Response to Varying Concentrations of Phytoplankton , 1985 .

[83]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[84]  R. Peters The Ecological Implications of Body Size , 1983 .

[85]  M. R. Droop,et al.  25 Years of Algal Growth Kinetics A Personal View , 1983 .

[86]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[87]  K. Banse Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial1,2 , 1982 .

[88]  M. Ohman,et al.  Size fractionation of phytoplankton as an estimate of food available to herbivores1 , 1982 .

[89]  D. Deibel Laboratory-measured grazing and ingestion rates of the salp, Thalia democratica Forskal, and the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea) , 1982 .

[90]  D. Schlesinger,et al.  Specific Growth Rates of Freshwater Algae in Relation to Cell Size and Light Intensity , 1981 .

[91]  A. Walsby,et al.  Sinking and Floating , 1981 .

[92]  C. Reynolds,et al.  The Physiological Ecology of Phytoplankton , 1981 .

[93]  Paul J. Harrison,et al.  Limiting nutrient patchiness and its rôle in phytoplankton ecology , 1979 .

[94]  Victor Smetacek,et al.  Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1 , 1978 .

[95]  E. Swift,et al.  Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett 1 , 1978 .

[96]  K. Denman,et al.  The structure of pelagic marine ecosystems. , 1978 .

[97]  R. W. Sheldon,et al.  Structure of Pelagic Food Chain and Relationship Between Plankton and Fish Production , 1977 .

[98]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[99]  A. Walsby,et al.  The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt , 1977 .

[100]  K. Banse RATES OF GROWTH, RESPIRATION AND PHOTOSYNTHESIS OF UNICELLULAR ALGAE AS RELATED TO CELL SIZE—A REVIEW 1, 2 , 1976 .

[101]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .

[102]  R. W. Sheldon,et al.  The Size Distribution of Particles in the OCEAN1 , 1972 .

[103]  A. Walsby Structure and function of gas vacuoles , 1972, Bacteriological reviews.