Estimation of the expected discounted penalty function for Lévy insurance risks

We consider a generalized risk process which consists of a subordinator plus a spectrally negative Lévy process. Our interest is to estimate the expected discounted penalty function (EDPF) from a set of data which is practical in the insurance framework. We construct an empirical type estimator of the Laplace transform of the EDPF and obtain it by a regularized Laplace inversion. The asymptotic behavior of the estimator under a high frequency assumption is investigated.

[1]  Manuel Morales On the expected discounted penalty function for a perturbed risk process driven by a subordinator , 2007 .

[2]  Hans U. Gerber,et al.  The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin , 1997 .

[3]  X. S. Lin,et al.  Stochastic Processes for Insurance and Finance. By T. Rolski, H. Schmidli, V. Schmidt and J. Teugels (John Wiley, Chichester, 1999) , 2000, British Actuarial Journal.

[4]  Y. Shimizu A new aspect of a risk process and its statistical inference , 2009 .

[5]  W. Schoutens,et al.  A risk model driven by Lévy processes , 2003 .

[6]  E. Biffis,et al.  On a generalization of the Gerber–Shiu function to path-dependent penalties☆ , 2010 .

[7]  T. Rolski Stochastic Processes for Insurance and Finance , 1999 .

[8]  Yasutaka Shimizu Functional estimation for Lévy measures of semimartingales with Poissonian jumps , 2009, J. Multivar. Anal..

[9]  Gordon E. Willmot,et al.  A generalized defective renewal equation for the surplus process perturbed by diffusion , 2002 .

[10]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[11]  Miljenko Huzak,et al.  Ruin probabilities and decompositions for general perturbed risk processes , 2004, math/0407125.

[12]  Robert M. Mnatsakanov,et al.  Nonparametric estimation of ruin probabilities given a random sample of claims , 2008 .

[13]  Empirical bounds for ruin probabilities , 1979 .

[14]  José Garrido,et al.  On The Expected Discounted Penalty function for Lévy Risk Processes , 2006 .

[15]  Jean Jacod,et al.  Asymptotic properties of power variations of Lévy processes , 2005, math/0511052.

[16]  Yoichi Nishiyama,et al.  Local asymptotic normality of a sequential model for marked point processes and its applications , 1995 .

[17]  S. Taylor,et al.  LÉVY PROCESSES (Cambridge Tracts in Mathematics 121) , 1998 .

[18]  Josef Steinebach,et al.  On the estimation of the adjustment coefficient in risk theory via intermediate order statistics , 1991 .

[19]  Claudia Kluppelberg,et al.  Ruin probabilities and overshoots for general Lévy insurance risk processes , 2004 .

[20]  Raymond J. Carroll,et al.  Theoretical aspects of ill-posed problems in statistics , 1991 .

[21]  Y. Shimizu Non-parametric estimation of the Gerber–Shiu function for the Wiener–Poisson risk model , 2012 .

[22]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[23]  Nonparametric Estimation of the Probability of Ruin. , 1986 .

[24]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[25]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[26]  Hanspeter Schmidli On the Gerber–Shiu function and change of measure , 2010 .

[27]  Didier Chauveau,et al.  Regularized Inversion of Noisy Laplace Transforms , 1994 .

[28]  Y. Kutoyants,et al.  Parameter estimation for stochastic processes , 1984 .

[29]  N. Veraverbeke,et al.  Nonparametric estimators for the probability of ruin , 1990 .

[30]  Tomasz Rolski,et al.  Stochastic Processes for Insurance and Finance , 2001 .

[31]  Jef L. Teugels,et al.  Empirical Laplace transform and approximation of compound distributions , 1990, Journal of Applied Probability.

[32]  Josef Steinebach,et al.  On Some alternative estimates of the adjustment coefficient in risk theory , 1990 .

[33]  Nonparametric estimation of the ruin probability for generalized risk processes , 2003 .

[34]  Hans U. Gerber,et al.  On the discounted penalty at ruin in a jump-diffusion and the perpetual put option , 1998 .

[35]  H. Gerber,et al.  On the Time Value of Ruin , 1997 .

[36]  P. Embrechts,et al.  A bootstrap procedure for estimating the adjustment coefficient , 1991 .

[37]  Edward W. Frees Nonparametric Renewal Function Estimation , 1986 .

[38]  Hans U. Gerber,et al.  From ruin theory to pricing reset guarantees and perpetual put options , 1999 .

[39]  A decomposition of the ruin probability for the risk process perturbed by diffusion , 2001 .

[40]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .