Ultra-narrow bright spatial solitons interacting with left-handed surfaces

A vectorial finite-difference time-domain (FDTD) method is used to present a numerical study of very narrow spatial solitons interacting with the surface of what has become known as a left-handed medium. After a comprehensive discussion of the background and the family of surface modes to be expected on a left-handed material, bounded by dispersion-free right-handed material, it is demonstrated that robust outcomes of the FDTD approach yield dramatic confirmation of these waves. The FDTD results show how the linear and nonlinear surface modes are created and can be tracked in time as they develop. It is shown how they can move backward or forward, depending on either a critical value of the local nonlinear conditions at the interface or the ambient linear conditions. Several examples are given to demonstrate the power and versatility of the method and the sensitivity to the launching conditions.

[1]  Seung-Han Park,et al.  Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film. , 2004, Optics express.

[2]  S. Anantha Ramakrishna,et al.  Focusing light using negative refraction , 2003 .

[3]  John B. Pendry Electromagnetic materials enter the negative age , 2001 .

[4]  Ultranarrow beams of electromagnetic radiation in media with a Kerr nonlinearity , 1999 .

[5]  G. Bellanca,et al.  FDTD modelling of spatial soliton propagation , 1997 .

[6]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[7]  Excitation of guided waves in layered structures with negative refraction. , 2004, Optics express.

[8]  Y. Kivshar,et al.  Nonlinear surface waves in left-handed materials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  A. D. Boardman,et al.  Electromagnetic surface modes , 1982 .

[10]  Steven A. Cummer Dynamics of causal beam refraction in negative refractive index materials , 2003 .

[11]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[12]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[13]  Allan D. Boardman,et al.  Control of planar nonlinear guided waves and spatial solitons with a left-handed medium , 2005, cond-mat/0603159.

[14]  Dennis M. Sullivan,et al.  Nonlinear FDTD formulations using Z transforms , 1995 .

[15]  Influence of nonlinearly induced diffraction on spatial solitary waves , 2000 .

[16]  M. Kuzyk,et al.  Three-dimensional optical pulse simulation using the FDTD method , 2000 .

[17]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[18]  B. Malomed,et al.  On the existence of subwavelength spatial solitons , 2000 .

[19]  John B. Schneider,et al.  A selective survey of the finite-difference time-domain literature , 1995 .

[20]  W. S. Weiglhofer,et al.  The negative index of refraction demystified , 2002 .

[21]  R. Ruppin,et al.  Surface polaritons of a left-handed medium , 2000 .

[22]  Y. Kivshar,et al.  Guided modes in negative refractive index waveguides , 2002, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[23]  S. M. Black,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Online Pattern Recognition in Noisy Background by Means of Wavelet Coefficients Thresholding , 2005 .

[24]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[25]  David R. Smith,et al.  Negative refractive index in left-handed materials. , 2000, Physical review letters.

[26]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Boris A. Malomed,et al.  One- and two-dimensional subwavelength solitons in saturable media , 2001 .

[28]  Richard W. Ziolkowski,et al.  Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time , 1993 .

[29]  Yuri S. Kivshar,et al.  Giant Goos-Hänchen effect at the reflection from left-handed metamaterials , 2003, physics/0305032.

[30]  P. W. Smith,et al.  Observation of spatial optical solitons in a nonlinear glass waveguide. , 1990, Optics letters.

[31]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[32]  Allen Taflove,et al.  FDTD Maxwell's equations models for nonlinear electrodynamics and optics , 1997 .

[33]  N. V. Vyssotina,et al.  `Optical needles' in media with saturating self-focusing nonlinearities , 2001 .

[34]  A. Taflove,et al.  Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations modeling , 1994, IEEE Photonics Technology Letters.

[35]  Richard Ziolkowski,et al.  Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. , 2003, Optics express.

[36]  B. Malomed,et al.  Subwavelength spatial solitons. , 1997, Optics letters.

[37]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[38]  Bahram Djafari-Rouhani,et al.  Effect of surface polaritons on the lateral displacement of a light beam at a dielectric interface , 1984 .

[39]  A. Newell,et al.  Spatial soliton optical switches: a soliton-based equivalent particle approach , 1992 .

[40]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[41]  Vladimir M. Shalaev,et al.  Optical properties of metal nanowires , 2003, SPIE Optics + Photonics.

[42]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.