CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS—IMPLEMENTATION AND VERIFICATION

We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1) an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.

[1]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[2]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[3]  T. Emonet,et al.  Simulations of magneto-convection in the solar photosphere Equations, methods, and results of the MURaM code , 2005 .

[4]  P. Di Matteo,et al.  The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping , 2008, 0808.0925.

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  Nancy M. Amato,et al.  Radiative effects in radiative shocks in shock tubes , 2011 .

[7]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[8]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[9]  G. C. Pomraning The Equations of Radiation Hydrodynamics , 2005 .

[10]  G. N. Minerbo,et al.  Maximum entropy Eddington factors , 1978 .

[11]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[12]  Nickolay Y. Gnedin,et al.  MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.

[13]  Stephen M. Lane,et al.  HYADES—A plasma hydrodynamics code for dense plasma studies , 1994 .

[14]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[15]  Nickolay Y. Gnedin,et al.  Cosmological radiative transfer comparison project – II. The radiation-hydrodynamic tests , 2009, 0905.2920.

[16]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[17]  G. Arfken Mathematical Methods for Physicists , 1967 .

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  Benedetta Ciardi,et al.  crashα: coupling continuum and line radiative transfer , 2009 .

[20]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[21]  J. Meyer-ter-Vehn,et al.  The point explosion with heat conduction , 1991 .

[22]  Germany,et al.  Interpreting the transmission windows of distant quasars , 2009, 0902.4071.

[23]  C. Vreugdenhil,et al.  Numerical methods for advection-diffusion problems , 1993 .

[24]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[25]  R. P. Drake,et al.  Wall shocks in high-energy-density shock tube experiments , 2009 .

[26]  B. Pontieu,et al.  Spicule-like structures observed in 3D realistic MHD simulations , 2009, 0906.4446.

[27]  A. Maselli,et al.  CRASH: A radiative transfer scheme , 2003, astro-ph/0307117.

[28]  V. Springel,et al.  An implementation of radiative transfer in the cosmological simulation code gadget , 2008, 0812.1801.

[29]  G. C. Pomraning,et al.  A flux-limited diffusion theory , 1981 .

[30]  B. Ciardi,et al.  Cosmological reionization around the first stars: Monte Carlo radiative transfer , 2000, astro-ph/0005181.

[31]  Tamas I. Gombosi,et al.  Hall magnetohydrodynamics on block-adaptive grids , 2008, J. Comput. Phys..

[32]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[33]  Robert Weaver,et al.  The RAGE radiation-hydrodynamic code , 2008 .

[34]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[35]  M. Edwards Elimination of Adaptive Grid Interface Errors in the Discrete Cell Centered Pressure Equation , 1996 .

[36]  Jim E. Morel Diffusion-limit asymptotics of the transport equation, the P1/3 equations, and two flux-limited diffusion theories , 2000 .

[37]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[38]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[39]  R. P. Drake,et al.  High-energy-density physics , 2010 .

[40]  J. Robert Buchler,et al.  Radiation transfer in the fluid frame. , 1983 .

[41]  Gordon L. Olson,et al.  BENCHMARK RESULTS FOR THE NON-EQUILIBRIUM MARSHAK DIFFUSION PROBLEM , 1996 .

[42]  Robert B. Lowrie,et al.  Radiative shock solutions with grey nonequilibrium diffusion , 2008 .

[43]  Austin,et al.  C2-ray: A new method for photon-conserving transport of ionizing radiation , 2005, astro-ph/0508416.

[44]  B. Pontieu,et al.  SPICULE-LIKE STRUCTURES OBSERVED IN THREE-DIMENSIONAL REALISTIC MAGNETOHYDRODYNAMIC SIMULATIONS , 2009 .

[45]  Beaver Court,et al.  High Energy Density , 1992 .