Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals

Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

[1]  R. Gajić,et al.  Enhanced phase sensitivity of metamaterial absorbers near the point of darkness , 2014 .

[2]  R. Cahill,et al.  Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal , 2008, IEEE Transactions on Antennas and Propagation.

[3]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[4]  Derek Abbott,et al.  Ultrabroadband reflective polarization convertor for terahertz waves , 2014 .

[5]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[6]  E. Kriezis,et al.  Beam-splitter switches based on zenithal bistable liquid-crystal gratings. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Jianguo Tian,et al.  Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface , 2015, Scientific Reports.

[8]  Marco Rahm,et al.  Strongly birefringent metamaterials as negative index terahertz wave plates , 2009 .

[9]  E. Kriezis,et al.  A switchable circular polarizer based on zenithal bistable liquid crystal gratings , 2016 .

[10]  Shan-Shan Jiang,et al.  Controlling the Polarization State of Light with a Dispersion-Free Metastructure , 2014 .

[11]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[12]  R. Jakoby,et al.  Voltage-Tunable Artificial Gradient-Index Lens Based on a Liquid Crystal Loaded Fishnet Metamaterial , 2014, IEEE Antennas and Wireless Propagation Letters.

[13]  N. Kanda,et al.  Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. , 2007, Optics express.

[14]  Gennady Shvets,et al.  Large-area, wide-angle, spectrally selective plasmonic absorber , 2011, 1104.3129.

[15]  Janusz Parka,et al.  Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal , 2014 .

[16]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[17]  Jianxiong Li,et al.  Optical Polarization Encoding Using Graphene‐Loaded Plasmonic Metasurfaces , 2016 .

[18]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .

[19]  T. Cui,et al.  Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition , 2016, Scientific Reports.

[20]  Martin Koch,et al.  Paper terahertz wave plates. , 2011, Optics express.

[21]  S. Bozhevolnyi,et al.  Plasmonic metasurfaces for efficient phase control in reflection. , 2013, Optics express.

[22]  Ci-Ling Pan,et al.  Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals , 2003 .

[23]  Jean-Baptiste Masson,et al.  Terahertz achromatic quarter-wave plate. , 2006, Optics letters.

[24]  Tetsuo Kan,et al.  Spiral metamaterial for active tuning of optical activity , 2013 .

[25]  Itsunari Yamada,et al.  Terahertz wire-grid polarizers with micrometer-pitch Al gratings. , 2009, Optics letters.

[26]  R. Caputo,et al.  Flexible terahertz wire grid polarizer with high extinction ratio and low loss. , 2016, Optics letters.

[27]  Ci-Ling Pan,et al.  Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. , 2006, Optics letters.

[28]  Goran Isić,et al.  Plasmonic lifetimes and propagation lengths in metallodielectric superlattices , 2014 .

[29]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[30]  Chengkuo Lee,et al.  Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. , 2013, Optics express.

[31]  D. Zografopoulos,et al.  Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching , 2015, Scientific Reports.

[32]  Bo O. Zhu,et al.  Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. , 2014, Optics express.

[33]  Xiewen Wen,et al.  Broadband THz reflective polarization rotator by multiple plasmon resonances. , 2014, Optics express.

[34]  M. Koch,et al.  Terahertz form birefringence. , 2010, Optics express.

[35]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[36]  Yandong Gong,et al.  Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface , 2015, Scientific Reports.

[37]  Eleftherios N. Economou,et al.  Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs , 2012 .

[38]  J. Sambles,et al.  Polarization conversion from a thin cavity array in the microwave regime , 2015, Scientific Reports.

[39]  Tie Jun Cui,et al.  Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces , 2014 .

[40]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[41]  E. Collett Field Guide to Polarization , 2005 .

[42]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[43]  D. Cumming,et al.  Imprinted terahertz artificial dielectric quarter wave plates. , 2010, Optics express.

[44]  M. Reuter,et al.  Highly birefringent, low-loss liquid crystals for terahertz applications , 2013 .

[45]  Wolfgang Menzel,et al.  Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology , 2015, IEEE Transactions on Antennas and Propagation.

[46]  Q. Wei,et al.  Polarization Conversion with Elliptical Patch Nanoantennas , 2012 .

[47]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[48]  Kosuke Yoshioka,et al.  Terahertz polarization pulse shaping with arbitrary field control , 2013, Nature Photonics.

[49]  R. Pan,et al.  Electrically Controlled Liquid Crystal Phase Grating for Terahertz Waves , 2009, IEEE Photonics Technology Letters.

[50]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[51]  Hongkyu Park,et al.  Robust Thin-Film Wire-Grid THz Polarizer Fabricated Via a Low-Cost Approach , 2013, IEEE Photonics Technology Letters.

[52]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[53]  Willie J Padilla,et al.  Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications , 2014 .

[54]  Jianguo Tian,et al.  Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial , 2013 .

[55]  D. Werner,et al.  Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates , 2014, Scientific Reports.

[56]  Ci-Ling Pan,et al.  Electrically controlled room temperature terahertz phase shifter with liquid crystal , 2004 .

[57]  N. Zheludev,et al.  Highly tunable optical activity in planar achiral terahertz metamaterials. , 2010, Optics express.

[58]  R. Gajić,et al.  Geometrical scaling and modal decay rates in periodic arrays of deeply subwavelength Terahertz resonators , 2014 .

[59]  Lei Zhou,et al.  Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces , 2015 .

[60]  Ning Dai,et al.  Tailor the functionalities of metasurfaces based on a complete phase diagram , 2016, 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM).

[61]  Weili Zhang,et al.  Manipulating polarization states of terahertz radiation using metamaterials , 2012 .

[62]  Qiang Kan,et al.  Terahertz polarization modulator based on metasurface , 2015 .

[63]  Farhan Rana,et al.  Microfluidic devices for terahertz spectroscopy of biomolecules. , 2008, Optics express.

[64]  Ci-Ling Pan,et al.  Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter. , 2004, Optics express.

[65]  R. Fedosejevs,et al.  Terahertz birefringence and attenuation properties of wood and paper. , 2006, Applied optics.

[66]  Kun Song,et al.  A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials , 2013 .

[67]  Xin Zhang,et al.  Comparison of birefringent electric split-ring resonator and meanderline , 2009 .

[68]  Jakub Herman,et al.  High Birefringence Liquid Crystals , 2013 .

[69]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[70]  Ci-Ling Pan,et al.  Polarizing terahertz waves with nematic liquid crystals. , 2008, Optics letters.

[71]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[72]  Yandong Gong,et al.  An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. , 2015, Optics express.

[73]  J. M. Ward,et al.  Free-standing fine-wire grids: Their manufacture, performance, and use at millimeter and submillimeter wavelengths , 1977 .

[74]  Tetsuo Kan,et al.  Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals , 2015, Nature Communications.