Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5.

While T-Nb2O5 has been frequently reported to display an exceptionally fast rate of Li-ion storage (similar to a capacitor), the detailed mechanism of the energy storage process is yet to be unraveled. Here we report our findings in probing the nature of the ultrafast Li-ion storage in T-Nb2O5 using both experimental and computational approaches. Experimentally, we used in operando Raman spectroscopy performed on a well-designed model cell to systematically characterize the dynamic evolution of vibrational band groups of T-Nb2O5 upon insertion and extraction of Li ions during repeated cycling. Theoretically, our model shows that Li ions are located at the loosely packed 4g atomic layers and prefer to form bridging coordination with the oxygens in the densely packed 4h atomic layers. The atomic arrangement of T-Nb2O5 determines the unique Li-ion diffusion path topologies, which allow direct Li-ion transport between bridging sites with very low steric hindrance. The proposed model was validated by computational and experimental vibrational analyses. A comprehensive comparison between T-Nb2O5 and other important intercalation-type Li-ion battery materials reveals the key structural features that lead to the exceptionally fast kinetics of T-Nb2O5 and the cruciality of atomic arrangements for designing a new generation of Li-ion conduction and storage materials.

[1]  M. Wilkening,et al.  Discriminating the Mobile Ions from the Immobile Ones in Li4+xTi5O12: 6Li NMR Reveals the Main Li+ Diffusion Pathway and Proposes a Refined Lithiation Mechanism , 2016 .

[2]  S. Komaba,et al.  Electrochemical and In Situ XAFS-XRD Investigation of Nb2O5 for Rechargeable Lithium Batteries , 2006 .

[3]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[4]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[5]  B. Hwang,et al.  Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). , 2014, Journal of the American Chemical Society.

[6]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[7]  L. Kavan,et al.  Raman spectroscopy and in situ Raman spectroelectrochemistry of bilayer ¹²C/¹³C graphene. , 2011, Nano letters.

[8]  B. Dunn,et al.  Simulations and Interpretation of Three-Electrode Cyclic Voltammograms of Pseudocapacitive Electrodes , 2016 .

[9]  Yue Zhu,et al.  Self-Assembled Nb2O5 Nanosheets for High Energy–High Power Sodium Ion Capacitors , 2016 .

[10]  A. Manthiram,et al.  In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge , 2013, Nanotechnology.

[11]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[12]  J. Tse,et al.  Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. , 2011, The journal of physical chemistry. A.

[13]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[14]  Ling Huang,et al.  Crystal Habit‐Tuned Nanoplate Material of Li[Li1/3–2x/3NixMn2/3–x/3]O2 for High‐Rate Performance Lithium‐Ion Batteries , 2010, Advanced materials.

[15]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of Chemical Research.

[16]  Anubhav Jain,et al.  Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures , 2015 .

[17]  Jason R. Schmink,et al.  Use of Raman spectroscopy as a tool for in situ monitoring of microwave-promoted reactions , 2007, Nature Protocols.

[18]  Bruce Dunn,et al.  High‐Performance Supercapacitors Based on Nanocomposites of Nb2O5 Nanocrystals and Carbon Nanotubes , 2011 .

[19]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[20]  Gerbrand Ceder,et al.  Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries , 2014, Science.

[21]  Seongseop Kim,et al.  Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. , 2014, ACS nano.

[22]  Robert H. Hurt,et al.  Engineering of Graphene Layer Orientation to Attain High Rate Capability and Anisotropic Properties in Li‐Ion Battery Electrodes , 2013 .

[23]  Yong Ding,et al.  Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy , 2012, Nature Protocols.

[24]  R. Frech,et al.  In Situ Roman Studies of Graphite Surface Structures during Lithium Electrochemical Intercalation , 1998 .

[25]  T. Eckl,et al.  Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles , 2014 .

[26]  Bobby G. Sumpter,et al.  Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals , 2013 .

[27]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[28]  D. Rousseau,et al.  Normal mode determination in crystals , 1981 .

[29]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[30]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[31]  Jeffrey Thomas Remillard,et al.  Local State‐of‐Charge Mapping of Lithium‐Ion Battery Electrodes , 2011 .

[32]  Qing’an Li,et al.  Vapor Growth and Chemical Delithiation of Stoichiometric LiCoO2 Crystals , 2012 .

[33]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[34]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[35]  Alexander C. Forse,et al.  High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. , 2016, Journal of the American Chemical Society.

[36]  Pooi See Lee,et al.  Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device , 2015 .

[37]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[38]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[39]  M. Tournoux,et al.  Phases LixMnO2λ rattachees au type spinelle , 1983 .

[40]  J. Jehng,et al.  The molecular structures and reactivity of supported niobium oxide catalysts , 1990 .

[41]  Vladimir G. Tsirelson,et al.  Multipole analysis of the electron density in triphylite, LiFePO4, using X‐ray diffraction data , 1993 .

[42]  Martin Z. Bazant,et al.  Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles , 2016, Science.

[43]  Meilin Liu,et al.  Probing Structural Evolution and Charge Storage Mechanism of NiO2Hx Electrode Materials using In Operando Resonance Raman Spectroscopy , 2016, Advanced science.

[44]  Yury Gogotsi,et al.  Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance , 2015, Advanced materials.

[45]  J. Jehng,et al.  Molecular structures of supported niobium oxide catalysts under in situ conditions , 1991 .

[46]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[47]  D. Hornig The Vibrational Spectra of Molecules and Complex Ions in Crystals. I. General Theory , 1948 .

[48]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[49]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[50]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[51]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[52]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[53]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[54]  Y. Gogotsi,et al.  Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li‐ion Batteries , 2016 .

[55]  I. Uchida,et al.  In situ Raman spectroscopic studies of LiNixMn2 − xO4 thin film cathode materials for lithium ion secondary batteries , 2002 .

[56]  M. Ziolek,et al.  Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. , 1999, Chemical reviews.

[57]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[58]  Y. Koishikawa,et al.  Thermodynamics and Kinetics of Lithium Intercalation into Nb2 O 5 Electrodes for a 2 V Rechargeable Lithium Battery , 1999 .

[59]  Liang Liang,et al.  Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. , 2014, Angewandte Chemie.

[60]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[61]  B. Dunn,et al.  Electrochemical Kinetics of Nanostructured Nb2O5 Electrodes , 2014 .

[62]  John Wang,et al.  Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. , 2010, Journal of the American Chemical Society.

[63]  M. El-Sayed,et al.  Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy , 2015 .

[64]  J. Jehng,et al.  Structural chemistry and Raman spectra of niobium oxides , 1991 .

[65]  J. Dahn,et al.  Structure Determination of Lixtis2 by Neutron-Diffraction , 1980 .

[66]  Robert Kostecki,et al.  The interaction of Li+ with single-layer and few-layer graphene. , 2010, Nano letters.

[67]  K. Kato,et al.  Die Kristallstruktur von T-Nb2O5 , 1975 .

[68]  H. S. Parker,et al.  Temperature-Pressure Phase Relationships in Niobium Pentoxide. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[69]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[70]  Jitong Wang,et al.  Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors , 2016, Scientific Reports.

[71]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[72]  R. S. Halford Motions of Molecules in Condensed Systems: I. Selection Rules, Relative Intensities, and Orientation Effects for Raman and Infra‐Red Spectra , 1946 .

[73]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[74]  I. Uchida,et al.  Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals , 2007 .

[75]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[76]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.