A Whipple $_7F_6$ formula revisited

A well-known formula of Whipple relates certain hypergeometric values $_7F_6(1)$ and $_4F_3(1)$. In this paper we revisit this relation from the viewpoint of the underlying hypergeometric data $HD$, to which there are also associated hypergeometric character sums and Galois representations. We explain a special structure behind Whipple's formula when the hypergeometric data $HD$ are primitive and defined over $\mathbb Q$. In this case, by the work of Katz, Beukers, Cohen, and Mellit, there are compatible families of $\ell$-adic representations of the absolute Galois group of $\mathbb Q$ attached to $HD$. For specialized choices of $HD$, these Galois representations are shown to be decomposable and automorphic. As a consequence, the values of the corresponding hypergeometric character sums can be explicitly expressed in terms of Fourier coefficients of certain modular forms. We further relate the hypergeometric values $_7F_6(1)$ in Whipple's formula to the periods of modular forms occurred.

[1]  R. Osburn,et al.  A modular supercongruence for $_6F_5$: an Ap\'ery-like story , 2017, 1701.04098.

[2]  Jan Stienstra,et al.  On the Picard-Fuchs equation and the formal brauer group of certain ellipticK3-surfaces , 1985 .

[3]  H. Cohen,et al.  Finite hypergeometric functions , 2015, 1505.02900.

[4]  W. N. Bailey SOME TRANSFORMATIONS OF GENERALIZED HYPERGEOMETRIC SERIES, AND CONTOURINTEGRALS OF BARNES'S TYPE , 1932 .

[5]  Marvin Tretkoff,et al.  Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .

[6]  D. Zagier Arithmetic and Topology of Differential Equations , 2016 .

[7]  Jean-Pierre Serre Sur les représentations modulaires de degré $2$ de $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ , 1987 .

[8]  R. Osburn,et al.  Interpolated Sequences and Critical L-Values of Modular Forms , 2018, Texts & Monographs in Symbolic Computation.

[9]  Yifan Yang On differential equations satisfied by modular forms , 2004 .

[10]  K. Hopcroft,et al.  Periods , 2020, Symptom Sorter.

[11]  John Greene,et al.  Clausen's theorem and hypergeometric functions over finite fields , 2009, Finite Fields Their Appl..

[12]  F. Beukers,et al.  Dwork Crystals I , 2019, International Mathematics Research Notices.

[13]  N. M. Katz Exponential sums and di?erential equations , 1990 .

[14]  D. McCarthy TRANSFORMATIONS OF WELL-POISED HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS , 2012 .

[15]  T. Kilbourn An extension of the Apéry number supercongruence , 2006 .

[16]  Zeta functions of an infinite family of K3 surfaces , 2002 .

[17]  Holly Swisher,et al.  Hypergeometric Functions over Finite Fields , 2015, 2017 MATRIX Annals.

[18]  Peter F. Stiller Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms , 1984 .

[19]  F. R. Villegas,et al.  Hypergeometric Supercongruences , 2018, 2017 MATRIX Annals.

[20]  M. Koike Hypergeometric series over finite fields and Apéry numbers , 1992 .

[21]  W. Zudilin,et al.  Special Hypergeometric Motives and Their L-Functions: Asai Recognition , 2019, Exp. Math..

[22]  Frank G. Garvan,et al.  Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics , 2011 .

[23]  Jenny G. Fuselier,et al.  Hypergeometric functions over F_p and relations to elliptic curves and modular forms , 2008, 0805.2885.

[24]  F. Beukers Fields of Definition of Finite Hypergeometric Functions , 2018, 2017 MATRIX Annals.

[25]  B. Dwork p-adic cycles , 1969 .

[26]  Jean-Pierre Serre Sur les répresentations modulaires de degré 2 de Gal $$ (\bar{Q}/Q) $$ , 2000 .

[27]  Jonathan M. Borwein,et al.  Some cubic modular identities of Ramanujan , 1994 .

[28]  K. Ono Values of Gaussian hypergeometric series , 1998 .

[29]  Don Zagier,et al.  Elliptic modular forms and their applications. , 2008 .

[30]  Bruce C. Berndt,et al.  Ramanujan’s Theories of Elliptic Functions to Alternative Bases , 1995 .

[31]  L. Long,et al.  Some supercongruences occurring in truncated hypergeometric series , 2014, 1403.5232.

[32]  N. M. Katz Another Look at the Dwork Family , 2009 .

[33]  Evaluation of Certain Hypergeometric Functions over Finite Fields , 2017, 1711.05842.

[34]  S. Ahlgren Gaussian hypergeometric series and combinatorial congruences , 2001 .

[35]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[36]  Adriana Salerno Counting Points over Finite Fields and Hypergeometric Functions , 2012, 1201.3335.

[37]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[38]  Galois representations with quaternion multiplication associated to noncongruence modular forms , 2010, 1005.4105.

[39]  Luis V. Dieulefait Computing the Level of a Modular Rigid Calabi-Yau Threefold , 2004, Exp. Math..

[40]  N. Yui,et al.  Supercongruences for rigid hypergeometric Calabi–Yau threefolds , 2017, Advances in Mathematics.

[41]  André Weil,et al.  Jacobi sums as “Grössencharaktere” , 1952 .

[42]  Fang-Ting Tu,et al.  Computing Special L-Values of Certain Modular Forms with Complex Multiplication , 2018 .

[43]  Maarten Roelofsma Finite hypergeometric functions , 2014 .

[44]  D. McCarthy On a supercongruence conjecture of Rodriguez-Villegas , 2012, 1204.1575.

[45]  Ling Long Some numeric hypergeometric supercongruences , 2018, Vertex Operator Algebras, Number Theory and Related Topics.

[46]  On Atkin and Swinnerton-Dyer congruence relations (3) , 2007, math/0701310.

[47]  Leon M. Hall,et al.  Special Functions , 1998 .

[48]  M. Papanikolas,et al.  A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform , 2012, 1205.1006.

[49]  W. Li,et al.  Potentially $GL_2$-type Galois representations associated to noncongruence modular forms , 2016, Transactions of the American Mathematical Society.

[50]  A. Clifford Representations Induced in an Invariant Subgroup. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Jenny G. Fuselier,et al.  Generalized Legendre curves and Quaternionic Multiplication , 2014, 1412.6906.

[52]  On Atkin–Swinnerton-Dyer congruence relations , 2003, math/0311287.

[53]  K. Ono,et al.  Combinatorics of traces of Hecke operators. , 2004, Proceedings of the National Academy of Sciences of the United States of America.