Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

[1]  B. Turpin,et al.  Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta Supersite Experiment. , 2002, Environmental science & technology.

[2]  Young-Joon Kim,et al.  An overview of ACE‐Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts , 2003 .

[3]  Tami C. Bond,et al.  Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change , 2005 .

[4]  S. Martin,et al.  Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy , 2007 .

[5]  P. Golob,et al.  Particles from the plume of Popocatépetl volcano, Mexico — the FESEM/EDS approach , 2003, Geological Society, London, Special Publications.

[6]  G. Dongarrà,et al.  Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy , 2003 .

[7]  B. Schichtel,et al.  Directional Biases in Back Trajectories Caused by Model and Input Data , 2005, Journal of the Air & Waste Management Association.

[8]  H. Ade,et al.  NEXAFS Spectroscopy and Microscopy of Natural and Synthetic Polymers , 2000 .

[9]  R. Sokhi,et al.  Air Quality Modeling , 2008 .

[10]  A. Laskin,et al.  Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP‐MS study , 2005 .

[11]  B. Mun,et al.  Carbon speciation of diesel exhaust and urban particulate matter NIST standard reference materials with C(1s) NEXAFS spectroscopy. , 2007, Environmental science & technology.

[12]  P. Buseck,et al.  Soot and sulfate aerosol particles in the remote marine troposphere , 1999 .

[13]  P. Buseck,et al.  Particle Formation from Pulsed Laser Irradiation of Soot Aggregates studied with scanning , 2007 .

[14]  L. Russell,et al.  Mapping organic coatings on atmospheric particles , 2002 .

[15]  M. Andreae,et al.  Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols , 2006 .

[16]  D. Lilly,et al.  Dynamics and chemistry of marine stratocumulus - DYCOMS II , 2003 .

[17]  Qi Zhang,et al.  Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. , 2005, Environmental science & technology.

[18]  M. Gilles,et al.  Organic Aerosol Growth Mechanisms and Their Climate-Forcing Implications , 2004, Science.

[19]  M. Pósfai,et al.  Nanostructure of atmospheric soot particles , 2006 .

[20]  C. Jacobsen,et al.  X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions , 2005 .

[21]  K. Ho,et al.  Low molecular weight dicarboxylic acids, ketoacids, and dicarbonyls in the fine particles from a roadway tunnel: possible secondary production from the precursors. , 2006, Environmental science & technology.

[22]  G. Cody,et al.  Examining marine particulate organic matter at sub-micron scales using scanning transmission X-ray microscopy and carbon X-ray absorption near edge structure spectroscopy , 2004 .

[23]  Chris Jacobsen,et al.  Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. , 2005, Environmental science & technology.

[24]  M. Denecke,et al.  Soft X-ray spectromicroscopy of humic acid europium(III) complexation by comparison to model substances , 2004 .

[25]  Chris Jacobsen,et al.  Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies––a comparative study on diesel soot with EELS and NEXAFS , 2005 .

[26]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[27]  G. Cass,et al.  Air quality model evaluation data for organics. 6. C3-C24 organic acids. , 2003, Environmental science & technology.

[28]  A. Braun Carbon speciation in airborne particulate matter with C (1s) NEXAFS spectroscopy. , 2005, Journal of environmental monitoring : JEM.

[29]  Biqing Liang,et al.  Carbon K‐Edge NEXAFS and FTIR‐ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils , 2005 .

[30]  Yutaka Kondo,et al.  Oxygenated and water‐soluble organic aerosols in Tokyo , 2007 .

[31]  A. Wexler,et al.  Speciation of size-resolved individual ultrafine particles in Pittsburgh, Pennsylvania , 2005 .

[32]  M. Molina,et al.  A User’s Reference , 2022 .

[33]  T. Tyliszczak,et al.  Nanometer-scale chemical heterogeneities of black carbon materials and their impacts on PCB sorption properties: soft X-ray spectromicroscopy study. , 2006, Environmental Science and Technology.

[34]  Teresa L. Campos,et al.  Source signatures of carbon monoxide and organic functional groups in Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) submicron aerosol types , 2003 .

[35]  M. Scholes,et al.  Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA) , 2001 .

[36]  Martin Gysel,et al.  Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol , 2003 .

[37]  A. Wexler,et al.  Size-resolved ultrafine particle composition analysis, 1. Atlanta , 2003 .

[38]  Yinon Rudich,et al.  Atmospheric HULIS : how humic-like are they ? A comprehensive and critical review , 2005 .

[39]  J. Rudolph,et al.  Determination of aromatic acids and nitrophenols in atmospheric aerosols by capillary electrophoresis. , 2002, Journal of chromatographic science.

[40]  S. McDow,et al.  Dicarboxylic acid concentration trends and sampling artifacts , 2005 .

[41]  S. D. Stasio,et al.  Comparative NEXAFS Study on Soot Obtained from an Ethylene/ Air Flame, a Diesel Engine, and Graphite , 2006 .

[42]  Dimitrios Kotzias,et al.  Carboxylic Acids in Secondary Aerosols from Oxidation of Cyclic Monoterpenes by Ozone , 2000 .

[43]  R. A. Cox,et al.  Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate , 2005 .

[44]  John H. Seinfeld,et al.  Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products , 1999 .

[45]  Meinrat O. Andreae,et al.  Optical properties of humic-like substances (HULIS) in biomass-burning aerosols , 2005 .

[46]  Barbara E. Carlson,et al.  Nonsphericity of dust‐like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling , 1995 .

[47]  K. Kawamura,et al.  Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere , 2005 .

[48]  P. Buseck,et al.  Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope. , 2007, Applied optics.

[49]  T. Tyliszczak,et al.  Oxygenated interface on biomass burn tar balls determined by single particle scanning transmission X-ray microscopy. , 2007, The journal of physical chemistry. A.

[50]  S. Myneni Soft X-ray Spectroscopy and Spectromicroscopy Studies of Organic Molecules in the Environment , 2002 .

[51]  Chris Jacobsen,et al.  Near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy for mapping nano‐scale distribution of organic carbon forms in soil: Application to black carbon particles , 2005 .

[52]  Martin J. Iedema,et al.  Analysis of Individual Environmental Particles Using Modern Methods of Electron Microscopy and X-Ray Microanalysis , 2006 .

[53]  Claus J. Nielsen,et al.  Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols , 2004 .

[54]  G. Cass,et al.  Sources of Fine Organic Aerosol. 9. Pine, Oak, and Synthetic Log Combustion in Residential Fireplaces , 1998 .

[55]  Andrew A. Lacis,et al.  Scattering and radiative properties of semi-external versus external mixtures of different aerosol types , 2004 .

[56]  M. Jacobson A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols , 2000 .

[57]  A. Kubátová,et al.  Photochemically induced decarboxylation in diesel soot extracts , 2006 .

[58]  T. Bates,et al.  Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon. , 2003, Environmental science & technology.

[59]  D. R. Worsnop,et al.  Density changes of aerosol particles as a result of chemical reaction , 2004 .

[60]  M. Jang,et al.  Products of benz[a]anthracene photodegradation in the presence of known organic constituents of atmospheric aerosols , 1997 .

[61]  S. Hainsworth,et al.  A CRITICAL ASSESSMENT , 2014 .

[62]  D. R. Worsnop,et al.  Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols , 2005 .

[63]  Z. Barkay,et al.  Atomic force and scanning electron microscopy of atmospheric particles , 2005, Microscopy research and technique.

[64]  K. Prather,et al.  Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere , 1997 .

[65]  K. Kawamura,et al.  Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air , 1987 .

[66]  K. Kelly,et al.  Impact of ferrocene on the structure of diesel exhaust soot as probed with wide-angle X-ray scattering and C(1s) NEXAFS spectroscopy , 2006 .

[67]  J. Seinfeld,et al.  Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot , 2005 .

[68]  D. R. Worsnop,et al.  under a Creative Commons License. Atmospheric Chemistry , 2006 .

[69]  A. Hoffer,et al.  On the possible origin of humic matter in fine continental aerosol , 2002 .

[70]  A. Wexler,et al.  Size‐resolved fine and ultrafine particle composition in Baltimore, Maryland , 2005 .

[71]  B. Huebert,et al.  PELTI: Measuring the Passing Efficiency of an Airborne Low Turbulence Aerosol Inlet , 2004 .

[72]  J. Schauer,et al.  Diurnal variations of individual organic compound constituents of ultrafine and accumulation mode particulate matter in the Los Angeles Basin. , 2004, Environmental science & technology.

[73]  Paul J. Webb,et al.  Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS , 2004 .

[74]  A. Tivanski,et al.  Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosols , 2007 .

[75]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[76]  C. Jacobsen,et al.  A study of diesel PM with X-ray microspectroscopy , 2004 .

[77]  G. Weckwerth,et al.  Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany) , 2001 .

[78]  M. Petters,et al.  Chemical aging and the hydrophobic‐to‐hydrophilic conversion of carbonaceous aerosol , 2006 .

[79]  Barbara J. Turpin,et al.  FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean , 2002 .

[80]  A. Wexler,et al.  Size‐resolved ultrafine particle composition analysis 2. Houston , 2003 .

[81]  A. Laskin,et al.  Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study , 2005 .

[82]  T. Sham Chemical Applications of Synchrotron Radiation: Part I: Dynamics and VUV SpectroscopyPart II: X-Ray Applications , 2002 .