Clustering of Variables Around Latent Components
暂无分享,去创建一个
[1] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[2] J. N. R. Jeffers,et al. Two Case Studies in the Application of Principal Component Analysis , 1967 .
[3] Ian T. Jolliffe,et al. Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .
[4] I. Jolliffe. Discarding Variables in a Principal Component Analysis. Ii: Real Data , 1973 .
[5] Y. Escoufier. LE TRAITEMENT DES VARIABLES VECTORIELLES , 1973 .
[6] Brian Everitt,et al. Cluster analysis , 1974 .
[7] H. Wold. Path Models with Latent Variables: The NIPALS Approach , 1975 .
[8] J. Overall,et al. Applied multivariate analysis , 1983 .
[9] S. Wold,et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .
[10] John C. Gower,et al. Measures of Similarity, Dissimilarity and Distance , 1985 .
[11] D. Rubin,et al. Statistical Analysis with Missing Data. , 1989 .
[12] W. Krzanowski. Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components , 1987 .
[13] Wojtek J. Krzanowski,et al. A COMPARISON OF VARIABLE REDUCTION TECHNIQUES IN AN ATTITUDINAL INVESTIGATION OF MEAT PRODUCTS , 1988 .
[14] Sabatier Robert,et al. Principal component analysis with instrumental variables as a tool for modelling composition data Daniel , 1989 .
[15] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[16] H. J. H. MacFie,et al. Preference mapping in practice , 1994 .
[17] P. Garthwaite. An Interpretation of Partial Least Squares , 1994 .
[18] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[19] R. Sabatier,et al. Refined approximations to permutation tests for multivariate inference , 1995 .
[20] Pascal Schlich,et al. Defining and Validating Assessor Compromises About Product Distances and Attribute Correlations , 1996 .
[21] Evelyne Vigneau,et al. Clustering of variables, application in consumer and sensory studies , 1997 .
[22] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[23] Evelyne Vigneau,et al. Une nouvelle distance entre variables. Application en classification , 1998 .
[24] Classification d'un ensemble de variables qualitatives , 1998 .
[25] A European sensory and consumer study—A case study on coffee , 1998 .
[26] Gabriele Soffritti,et al. Hierarchical clustering of variables: a comparison among strategies of analysis , 1999 .
[27] S. Vines. Simple principal components , 2000 .
[28] John W. Graham,et al. Multiple imputation in multivariate research. , 2000 .
[29] Evelyne Vigneau,et al. Segmentation of a panel of consumers using clustering of variables around latent directions of preference , 2001 .
[30] Ian T. Jolliffe,et al. VARIABLE SELECTION AND INTERPRETATION OF COVARIANCE PRINCIPAL COMPONENTS , 2001 .
[31] Liisa Lähteenmäki,et al. Food neophobia among the Finns and related responses to familiar and unfamiliar foods , 2001 .
[32] Frank Westad,et al. Gender specific preferences and attitudes towards meat , 2002 .
[33] Desire L. Massart,et al. Feature selection in principal component analysis of analytical data , 2002 .
[34] Patricio Cumsille,et al. Methods for Handling Missing Data , 2003 .
[35] C. Delahunty,et al. Which juice is 'healthier'? A consumer study of probiotic non-dairy juice drinks , 2004 .
[36] D. B. Hibbert. Multivariate calibration and classification - T. Naes, T. Isaksson, T. Fearn and T. Davis, NIR Publications, Chichester, 2002, ISBN 0 9528666 2 5, UK @$45.00, US$75.00 , 2004 .
[37] Anette Kistrup Thybo,et al. Explaining Danish children's preferences for apples using instrumental, sensory and demographic/behavioural data , 2004 .