Rigorous Polynomial Approximation Using Taylor Models in Coq
暂无分享,去创建一个
Nicolas Brisebarre | Mioara Joldes | Laurent Théry | Micaela Mayero | Laurence Rideau | Jean-Michel Muller | Érik Martin-Dorel | Ioana Pasca | L. Rideau | J. Muller | I. Pasca | N. Brisebarre | M. Joldes | É. Martin-Dorel | L. Théry | Micaela Mayero | Mioara Joldes
[1] Bas Spitters,et al. Computer Certified Efficient Exact Reals in Coq , 2011, Calculemus/MKM.
[2] Francisco Cháves,et al. Utilisation et certification de l'arithmétique d'intervalles dans un assistant de preuves. (Taylor models to extend the use and certification of interval arithmeticin a proof checker) , 2007 .
[3] Maribel Fernández,et al. Curry-Style Types for Nominal Terms , 2006, TYPES.
[4] Joris van der Hoeven,et al. Mathematical Software - ICMS 2010, Third International Congress on Mathematical Software, Kobe, Japan, September 13-17, 2010. Proceedings , 2010, ICMS.
[5] Martin Berz,et al. Rigorous global search using taylor models , 2009, SNC '09.
[6] Bruno Salvy. The dynamic dictionary of mathematical functions , 2010, AISC'10/MKM'10/Calculemus'10.
[7] Jean-Michel Muller,et al. Worst cases for correct rounding of the elementary functions in double precision , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.
[8] Arnaud Tisserand,et al. Computing machine-efficient polynomial approximations , 2006, TOMS.
[9] Yves Bertot,et al. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .
[10] Benjamin Grégoire,et al. Extending Coq with Imperative Features and Its Application to SAT Verification , 2010, ITP.
[11] Guillaume Melquiond,et al. Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq , 2011, 2011 IEEE 20th Symposium on Computer Arithmetic.
[12] Benjamin Grégoire,et al. Full Reduction at Full Throttle , 2011, CPP.
[13] Arnold Neumaier,et al. Taylor Forms—Use and Limits , 2003, Reliab. Comput..
[14] Stephen M. Watt,et al. Intelligent Computer Mathematics , 2014, Lecture Notes in Computer Science.
[15] Abraham Ziv,et al. Fast evaluation of elementary mathematical functions with correctly rounded last bit , 1991, TOMS.
[16] Christoph Quirin Lauter,et al. Sollya: An Environment for the Development of Numerical Codes , 2010, ICMS.
[17] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[18] Nathalie Revol,et al. A Taylor Function Calculus for Hybrid System Analysis: Validation in Coq , 2010 .
[19] Roland Zumkeller. Formal Global Optimisation with Taylor Models , 2006, IJCAR.
[20] Richard P. Stanley,et al. Differentiably Finite Power Series , 1980, Eur. J. Comb..
[21] Herman Geuvers,et al. Constructive Reals in Coq: Axioms and Categoricity , 2000, TYPES.
[22] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[23] Martin Berz,et al. Long-term stability of the Tevatron by verified global optimization , 2006 .
[24] Alexis Darrasse,et al. The Dynamic Dictionary of Mathematical Functions (DDMF) , 2010, ICMS.
[25] Russell O'Connor,et al. Certified Exact Transcendental Real Number Computation in Coq , 2008, TPHOLs.
[26] David Aspinall,et al. Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.
[27] James Demmel,et al. IEEE Standard for Floating-Point Arithmetic , 2008 .
[28] Jean-Michel Muller,et al. Elementary Functions: Algorithms and Implementation , 1997 .
[29] Josef Urban,et al. Intelligent Computer Mathematics - 18th Symposium, Calculemus 2011, and 10th International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings , 2011, Calculemus/MKM.
[30] M. Joldes,et al. Rigorous Polynomial Approximations and Applications , 2011 .
[31] Florent de Dinechin,et al. Assisted verification of elementary functions using Gappa , 2006, SAC.
[32] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[33] Enrico Tassi,et al. A Small Scale Reflection Extension for the Coq system , 2008 .
[34] P. Pani,et al. GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .
[35] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[36] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[37] Sylvain Chevillard,et al. Évaluation efficace de fonctions numériques - Outils et exemples. (Efficient evaluation of numerical functions - Tools and examples) , 2009 .
[38] M. Berz,et al. TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .
[39] Larry Wos,et al. What Is Automated Reasoning? , 1987, J. Autom. Reason..
[40] Benjamin Grégoire,et al. A Purely Functional Library for Modular Arithmetic and Its Application to Certifying Large Prime Numbers , 2006, IJCAR.
[41] J. Muller. Elementary Functions, Algorithms and Implementation, 2nd Edition , 2006 .
[42] Micaela Mayero,et al. Formalisation et automatisation de preuves en analyses réelle et numérique , 2001 .
[43] K. Perez. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .
[44] Kyoko Makino,et al. Rigorous analysis of nonlinear motion in particle accelerators , 1998 .
[45] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[46] Brian Campbell,et al. An Executable Semantics for CompCert C , 2012, CPP.
[47] Pierre Castéran,et al. Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.
[48] I. S. Gradshteyn,et al. 1 – ELEMENTARY FUNCTIONS , 1980 .
[49] Guillaume Melquiond. Proving Bounds on Real-Valued Functions with Computations , 2008, IJCAR.
[50] Bruno Salvy,et al. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.
[51] Nedialko S. Nedialkov,et al. On Taylor Model Based Integration of ODEs , 2007, SIAM J. Numer. Anal..
[52] Nicolas Brisebarre,et al. Efficient polynomial L-approximations , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).
[53] J. Harrison,et al. Efficient and accurate computation of upper bounds of approximation errors , 2011, Theor. Comput. Sci..