Rigorous Polynomial Approximation Using Taylor Models in Coq

One of the most common and practical ways of representing a real function on machines is by using a polynomial approximation. It is then important to properly handle the error introduced by such an approximation. The purpose of this work is to offer guaranteed error bounds for a specific kind of rigorous polynomial approximation called Taylor model. We carry out this work in the Coq proof assistant, with a special focus on genericity and efficiency for our implementation. We give an abstract interface for rigorous polynomial approximations, parameterized by the type of coefficients and the implementation of polynomials, and we instantiate this interface to the case of Taylor models with interval coefficients, while providing all the machinery for computing them. We compare the performances of our implementation in Coq with those of the Sollya tool, which contains an implementation of Taylor models written in C. This is a milestone in our long-term goal of providing fully formally proved and efficient Taylor models.

[1]  Bas Spitters,et al.  Computer Certified Efficient Exact Reals in Coq , 2011, Calculemus/MKM.

[2]  Francisco Cháves,et al.  Utilisation et certification de l'arithmétique d'intervalles dans un assistant de preuves. (Taylor models to extend the use and certification of interval arithmeticin a proof checker) , 2007 .

[3]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[4]  Joris van der Hoeven,et al.  Mathematical Software - ICMS 2010, Third International Congress on Mathematical Software, Kobe, Japan, September 13-17, 2010. Proceedings , 2010, ICMS.

[5]  Martin Berz,et al.  Rigorous global search using taylor models , 2009, SNC '09.

[6]  Bruno Salvy The dynamic dictionary of mathematical functions , 2010, AISC'10/MKM'10/Calculemus'10.

[7]  Jean-Michel Muller,et al.  Worst cases for correct rounding of the elementary functions in double precision , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[8]  Arnaud Tisserand,et al.  Computing machine-efficient polynomial approximations , 2006, TOMS.

[9]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[10]  Benjamin Grégoire,et al.  Extending Coq with Imperative Features and Its Application to SAT Verification , 2010, ITP.

[11]  Guillaume Melquiond,et al.  Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq , 2011, 2011 IEEE 20th Symposium on Computer Arithmetic.

[12]  Benjamin Grégoire,et al.  Full Reduction at Full Throttle , 2011, CPP.

[13]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[14]  Stephen M. Watt,et al.  Intelligent Computer Mathematics , 2014, Lecture Notes in Computer Science.

[15]  Abraham Ziv,et al.  Fast evaluation of elementary mathematical functions with correctly rounded last bit , 1991, TOMS.

[16]  Christoph Quirin Lauter,et al.  Sollya: An Environment for the Development of Numerical Codes , 2010, ICMS.

[17]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[18]  Nathalie Revol,et al.  A Taylor Function Calculus for Hybrid System Analysis: Validation in Coq , 2010 .

[19]  Roland Zumkeller Formal Global Optimisation with Taylor Models , 2006, IJCAR.

[20]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[21]  Herman Geuvers,et al.  Constructive Reals in Coq: Axioms and Categoricity , 2000, TYPES.

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  Martin Berz,et al.  Long-term stability of the Tevatron by verified global optimization , 2006 .

[24]  Alexis Darrasse,et al.  The Dynamic Dictionary of Mathematical Functions (DDMF) , 2010, ICMS.

[25]  Russell O'Connor,et al.  Certified Exact Transcendental Real Number Computation in Coq , 2008, TPHOLs.

[26]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[27]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[28]  Jean-Michel Muller,et al.  Elementary Functions: Algorithms and Implementation , 1997 .

[29]  Josef Urban,et al.  Intelligent Computer Mathematics - 18th Symposium, Calculemus 2011, and 10th International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings , 2011, Calculemus/MKM.

[30]  M. Joldes,et al.  Rigorous Polynomial Approximations and Applications , 2011 .

[31]  Florent de Dinechin,et al.  Assisted verification of elementary functions using Gappa , 2006, SAC.

[32]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[33]  Enrico Tassi,et al.  A Small Scale Reflection Extension for the Coq system , 2008 .

[34]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[35]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[36]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[37]  Sylvain Chevillard,et al.  Évaluation efficace de fonctions numériques - Outils et exemples. (Efficient evaluation of numerical functions - Tools and examples) , 2009 .

[38]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[39]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[40]  Benjamin Grégoire,et al.  A Purely Functional Library for Modular Arithmetic and Its Application to Certifying Large Prime Numbers , 2006, IJCAR.

[41]  J. Muller Elementary Functions, Algorithms and Implementation, 2nd Edition , 2006 .

[42]  Micaela Mayero,et al.  Formalisation et automatisation de preuves en analyses réelle et numérique , 2001 .

[43]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[44]  Kyoko Makino,et al.  Rigorous analysis of nonlinear motion in particle accelerators , 1998 .

[45]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[46]  Brian Campbell,et al.  An Executable Semantics for CompCert C , 2012, CPP.

[47]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[48]  I. S. Gradshteyn,et al.  1 – ELEMENTARY FUNCTIONS , 1980 .

[49]  Guillaume Melquiond Proving Bounds on Real-Valued Functions with Computations , 2008, IJCAR.

[50]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[51]  Nedialko S. Nedialkov,et al.  On Taylor Model Based Integration of ODEs , 2007, SIAM J. Numer. Anal..

[52]  Nicolas Brisebarre,et al.  Efficient polynomial L-approximations , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[53]  J. Harrison,et al.  Efficient and accurate computation of upper bounds of approximation errors , 2011, Theor. Comput. Sci..