Subdifferential‐based implicit return‐mapping operators in computational plasticity

In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo-potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary-value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.

[1]  Tomáš Roubíček,et al.  Rate-Independent Systems: Theory and Application , 2015 .

[2]  S. Caddemi,et al.  Convergence of the Newton‐Raphson algorithm in elastic‐plastic incremental analysis , 1991 .

[3]  Mathematical and numerical modeling of the non-associated plasticity of soils—Part 1: The boundary value problem , 2012 .

[4]  Chen Lin,et al.  A return mapping algorithm for unified strength theory model , 2015 .

[5]  K. Willam,et al.  Triaxial failure criterion for concrete and its generalization , 1995 .

[6]  G. D. Maso,et al.  QUASISTATIC EVOLUTION FOR CAM-CLAY PLASTICITY: EXAMPLES OF SPATIALLY HOMOGENEOUS SOLUTIONS , 2009 .

[7]  Stanislav Sysala An improved return-mapping scheme for nonsmooth plastic potentials: PART II - the Mohr-Coulomb yield criterion , 2015, ArXiv.

[8]  Tomáš Roubíček,et al.  Rate-Independent Systems , 2015 .

[9]  Defeng Sun,et al.  Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization , 2005, Math. Program..

[10]  N. Zouain,et al.  Formulations in rates and increments for elastic-plastic analysis , 1988 .

[11]  Lícia Mouta da Costa,et al.  Plastic collapse in non-associated hardening materials with application to Cam-clay , 2007 .

[12]  Milan Jirásek,et al.  Damage-plastic model for concrete failure , 2006 .

[13]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[14]  Donald E. Carlson,et al.  The derivative of a tensor-valued function of a tensor , 1986 .

[15]  Agustí Pérez-Foguet,et al.  On the formulation of closest‐point projection algorithms in elastoplasticity—part I: The variational structure , 2002 .

[16]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[17]  Martin Čermák,et al.  On an implicit return-mapping operator in Mohr-Coulomb plasticity and its derivation via subdifferential theory , 2015, 1508.07435.

[18]  F. Karaoulanis Implicit Numerical Integration of Nonsmooth Multisurface Yield Criteria in the Principal Stress Space , 2013 .

[19]  W. T. Koiter Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface , 1953 .

[20]  Günter Hofstetter,et al.  A damage plasticity model for different types of intact rock , 2015 .

[21]  Tomáš Kozubek,et al.  Discretization and numerical realization of contact problems for elastic‐perfectly plastic bodies. PART II – numerical realization, limit analysis , 2015 .

[22]  Ronaldo I. Borja,et al.  On the numerical integration of three-invariant elastoplastic constitutive models , 2003 .

[23]  R. De Borst,et al.  Integration of plasticity equations for singular yield functions , 1987 .

[24]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[25]  Sergey Repin,et al.  A new incremental method of computing the limit load in deformation plasticity models , 2015 .

[26]  Scott W. Sloan,et al.  A C2 continuous approximation to the Mohr-Coulomb yield surface , 2011 .

[27]  Jaroslav Kruis,et al.  An improved return-mapping scheme for nonsmooth yield surfaces : PART Ithe Haigh-Westergaard coordinates , 2015 .

[28]  Sergey I. Repin,et al.  A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting , 2016, J. Comput. Appl. Math..

[29]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[30]  R. Taylor,et al.  An efficient return mapping algorithm for elastoplasticity with exact closed form solution of the local constitutive problem , 2015 .

[31]  Kenneth Runesson,et al.  Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type , 1996 .

[32]  Martin Cermák,et al.  A TFETI domain decomposition solver for elastoplastic problems , 2012, Appl. Math. Comput..

[33]  Fabio De Angelis,et al.  Computational Issues and Numerical Applications in Rate-Dependent Plasticity , 2013 .

[34]  Ivan Hlaváček,et al.  Discretization and numerical realization of contact problems for elastic‐perfectly plastic bodies. PART I – discretization, limit analysis , 2015 .

[35]  Wai-Fah Chen,et al.  Limit analysis in soil mechanics , 1990 .

[36]  Sergey Repin,et al.  Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals , 2016 .

[37]  Christian Wieners,et al.  On the superlinear convergence in computational elasto-plasticity , 2011 .

[38]  Stanislav Sysala,et al.  Properties and simplifications of constitutive time‐discretized elastoplastic operators , 2014 .

[39]  Stanislav Sysala Application of a modified semismooth Newton method to some elasto-plastic problems , 2012, Math. Comput. Simul..

[40]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[41]  Lars Vabbersgaard Andersen,et al.  Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations , 2015 .

[42]  Defeng Sun,et al.  A further result on an implicit function theorem for locally Lipschitz functions , 2001, Oper. Res. Lett..

[43]  Jan Valdman,et al.  Solution of One-Time-Step Problems in Elastoplasticity by a Slant Newton Method , 2008, SIAM J. Sci. Comput..

[44]  Fabio De Angelis,et al.  An internal variable variational formulation of viscoplasticity , 2000 .

[45]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[46]  S. Sloan Geotechnical stability analysis , 2013 .

[47]  Lars Vabbersgaard Andersen,et al.  Efficient return algorithms for associated plasticity with multiple yield planes , 2006 .

[48]  Mohammed Hjiaj,et al.  A complete stress update algorithm for the non-associated Drucker–Prager model including treatment of the apex , 2003 .

[49]  Radim Blaheta,et al.  Convergence of Newton-type methods in incremental return mapping analysis of elasto-plastic problems , 1997 .

[50]  B. Stok,et al.  Consistent tangent operator for cutting-plane algorithm of elasto-plasticity , 2014 .

[51]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[52]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[53]  J. B. Martin,et al.  Algorithm for the solution of internal variable problems in plasticity , 1991 .

[54]  M. Seetharama Gowda,et al.  Inverse and implicit function theorems for H-differentiable and semismooth functions , 2004, Optim. Methods Softw..

[55]  Agustí Pérez Foguet,et al.  On the formulation of closest‐point projection algorithms in elastoplasticity—part II: Globally convergent schemes , 2000 .

[56]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .