Electronic neural interfaces

[1]  Yu-Wei Wu,et al.  Massively parallel microwire arrays integrated with CMOS chips for neural recording , 2019, Science Advances.

[2]  Gert Cauwenberghs,et al.  A 3 mm × 3 mm Fully Integrated Wireless Power Receiver and Neural Interface System-on-Chip , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[3]  Nitish Thakor,et al.  The Microbead: A 0.009 mm3 Implantable Wireless Neural Stimulator , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[4]  Hyuntak Jeon,et al.  A High DR, DC-Coupled, Time-Based Neural-Recording IC With Degeneration R-DAC for Bidirectional Neural Interface , 2019, IEEE Journal of Solid-State Circuits.

[5]  Tzi-Dar Chiueh,et al.  An Ultra-Low-Power Dual-Mode Automatic Sleep Staging Processor Using Neural-Network-Based Decision Tree , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Jihun Lee,et al.  A Distributed Wireless Network of Implantable Sub-mm Cortical Microstimulators for Brain-Computer Interfaces , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[7]  Milin Zhang,et al.  A Low-Noise Chopper Amplifier Designed for Multi-Channel Neural Signal Acquisition , 2019, IEEE Journal of Solid-State Circuits.

[8]  Yong Lian,et al.  A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Michel M. Maharbiz,et al.  The “sewing machine” for minimally invasive neural recording , 2019, bioRxiv.

[10]  Xuan-Thuan Nguyen,et al.  22.8 Adaptively Clock-Boosted Auto-Ranging Responsive Neurostimulator for Emerging Neuromodulation Applications , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[11]  Guosong Hong,et al.  Novel electrode technologies for neural recordings , 2019, Nature Reviews Neuroscience.

[12]  Benjamin C. Johnson,et al.  17.5 A 0.8mm3 Ultrasonic Implantable Wireless Neural Recording System With Linear AM Backscattering , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[13]  Wenlong Jiang,et al.  A 0.338 cm3, Artifact-Free, 64-Contact Neuromodulation Platform for Simultaneous Stimulation and Sensing , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[14]  Mattias P. Karlsson,et al.  High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays , 2019, Neuron.

[15]  Benjamin C. Johnson,et al.  A 0.8mm(3) Ultrasonic Implantable Wireless Neural Recording System with Linear AM Backscattering , 2019 .

[16]  Minkyu Je,et al.  A Sub-µW/Ch Analog Front-End for Δ-Neural Recording With Spike-Driven Data Compression , 2019, IEEE Trans. Biomed. Circuits Syst..

[17]  Dennis Sylvester,et al.  An Area-Efficient 128-Channel Spike Sorting Processor for Real-Time Neural Recording With $0.175~\mu$ W/Channel in 65-nm CMOS , 2019, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Benjamin C. Johnson,et al.  A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates , 2018, Nature Biomedical Engineering.

[19]  Volkan Cevher,et al.  Adaptive Learning-Based Compressive Sampling for Low-power Wireless Implants , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Fabien B. Wagner,et al.  Targeted neurotechnology restores walking in humans with spinal cord injury , 2018, Nature.

[21]  Maurits Ortmanns,et al.  Efficient implementation and stability analysis of a HV-CMOS current/voltage mode stimulator , 2018, 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[22]  Sheng-Fu Liang,et al.  A Fully Integrated 16-Channel Closed-Loop Neural-Prosthetic CMOS SoC With Wireless Power and Bidirectional Data Telemetry for Real-Time Efficient Human Epileptic Seizure Control , 2018, IEEE Journal of Solid-State Circuits.

[23]  Siyuan Yu,et al.  A CMOS Distributed Sensor System for High-Density Wireless Neural Implants for Brain-Machine Interfaces , 2018, ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC).

[24]  Timothy G. Constandinou,et al.  A 0.006 mm2 1.2 $\mu$ W Analog-to-Time Converter for Asynchronous Bio-Sensors , 2018, IEEE Journal of Solid-State Circuits.

[25]  Alexandre Schmid,et al.  A Sub- $\mu\text{W}$ /Channel, 16-Channel Seizure Detection and Signal Acquisition SoC Based on Multichannel Compressive Sensing , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Xing Sheng,et al.  Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources , 2018, Proceedings of the National Academy of Sciences.

[27]  Benjamin C. Johnson,et al.  Toward true closed-loop neuromodulation: artifact-free recording during stimulation , 2018, Current Opinion in Neurobiology.

[28]  Samantha R Santacruz,et al.  Recent advances in neural dust: towards a neural interface platform , 2018, Current Opinion in Neurobiology.

[29]  Samantha R. Santacruz,et al.  A high-density carbon fiber neural recording array technology , 2018, bioRxiv.

[30]  Timothy G. Constandinou,et al.  Autonomous SoC for Neural Local Field Potential Recording in mm-Scale Wireless Implants , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[31]  Maysam Ghovanloo,et al.  An Adaptive Averaging Low Noise Front-End for Central and Peripheral Nerve Recording , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Maysam Ghovanloo,et al.  Towards a 1.1 mm2 free-floating wireless implantable neural recording SoC , 2018, 2018 IEEE Custom Integrated Circuits Conference (CICC).

[33]  Hoi-Jun Yoo,et al.  An EEG-NIRS Multimodal SoC for Accurate Anesthesia Depth Monitoring , 2018, IEEE Journal of Solid-State Circuits.

[34]  Amin Arbabian,et al.  A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[35]  Maysam Ghovanloo,et al.  A mm-sized free-floating wirelessly powered implantable optical stimulating system-on-a-chip , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[36]  Timothy Denison,et al.  Creating neural “co-processors” to explore treatments for neurological disorders , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[37]  A. Kral,et al.  New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents , 2018, Scientific Reports.

[38]  Minkyu Je,et al.  A 110dB-CMRR 100dB-PSRR multi-channel neural-recording amplifier system using differentially regulated rejection ratio enhancement in 0.18μm CMOS , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[39]  Mario Konijnenburg,et al.  A 665μW silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[40]  Hariprasad Chandrakumar,et al.  A 15.2-ENOB continuous-time ΔΣ ADC for a 200mVpp-linear-input-range neural recording front-end , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[41]  Yiannos Manoli,et al.  A fully immersible deep-brain neural probe with modular architecture and a delta-sigma ADC integrated under each electrode for parallel readout of 144 recording sites , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[42]  Roman Genov,et al.  A recursive-memory brain-state classifier with 32-channel track-and-zoom Δ2 Σ ADCs and Charge-Balanced Programmable Waveform Neurostimulators , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[43]  Gert Cauwenberghs,et al.  A 92dB dynamic range sub-μVrms-noise 0.8μW/ch neural-recording ADC array with predictive digital autoranging , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[44]  Yves De Koninck,et al.  A 13μm CMOS SoC for simultaneous multichannel optogenetics and electrophysiological brain recording , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[45]  Dejan Markovic,et al.  A 216 nW/channel DSP engine for triggering theta phase-locked brain stimulation , 2017, 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[46]  William J Tyler,et al.  Ultrasonic neuromodulation , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[47]  Timothy H. Lucas,et al.  Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[48]  Esther Rodriguez-Villegas,et al.  A 950 nW Analog-Based Data Reduction Chip for Wearable EEG Systems in Epilepsy , 2017, IEEE Journal of Solid-State Circuits.

[49]  Tonio Ball,et al.  Closed-loop interaction with the cerebral cortex: a review of wireless implant technology§ , 2017 .

[50]  A. Sayed Herbawi,et al.  High-density CMOS neural probe implementing a hierarchical addressing scheme for 1600 recording sites and 32 output channels , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[51]  Jan M. Rabaey,et al.  An implantable 700μW 64-channel neuromodulation IC for simultaneous recording and stimulation with rapid artifact recovery , 2017, 2017 Symposium on VLSI Circuits.

[52]  Roman Genov,et al.  27.3 All-wireless 64-channel 0.013mm2/ch closed-loop neurostimulator with rail-to-rail DC offset removal , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[53]  Syed Anas Imtiaz,et al.  An Ultralow Power System on Chip for Automatic Sleep Staging , 2017, IEEE Journal of Solid-State Circuits.

[54]  Refet Firat Yazicioglu,et al.  Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology , 2017, IEEE Reviews in Biomedical Engineering.

[55]  Gert Cauwenberghs,et al.  A CMOS Current Steering Neurostimulation Array With Integrated DAC Calibration and Charge Balancing , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[56]  Qin,et al.  A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates , 2017 .

[57]  Zhenan Bao,et al.  Pursuing prosthetic electronic skin. , 2016, Nature materials.

[58]  N. Birbaumer,et al.  Brain–computer interfaces for communication and rehabilitation , 2016, Nature Reviews Neurology.

[59]  Jan Van der Spiegel,et al.  A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[60]  Anantha Chandrakasan,et al.  A sub-μW 36nV/√Hz chopper amplifier for sensors using a noise-efficient inverter-based 0.2V-supply input stage , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[61]  Refet Firat Yazicioglu,et al.  22.7 A 966-electrode neural probe with 384 configurable channels in 0.13µm SOI CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[62]  Jian Xu,et al.  A 16-Channel Nonparametric Spike Detection ASIC Based on EC-PC Decomposition , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[63]  Arindam Basu,et al.  A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[64]  Wouter A. Serdijn,et al.  Design of Efficient and Safe Neural Stimulators , 2016 .

[65]  Yiannos Manoli,et al.  22.6 A 22V compliant 56µW active charge balancer enabling 100% charge compensation even in monophasic and 36% amplitude correction in biphasic neural stimulators , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[66]  Michael P. Flynn,et al.  A Bidirectional Neural Interface Circuit With Active Stimulation Artifact Cancellation and Cross-Channel Common-Mode Noise Suppression , 2016, IEEE Journal of Solid-State Circuits.

[67]  Chen Zhang,et al.  A 16-Channel Patient-Specific Seizure Onset and Termination Detection SoC With Impedance-Adaptive Transcranial Electrical Stimulator , 2015, IEEE Journal of Solid-State Circuits.

[68]  B. Jobst,et al.  Critical review of the responsive neurostimulator system for epilepsy , 2015, Medical devices.

[69]  K. Deisseroth Optogenetics: 10 years of microbial opsins in neuroscience , 2015, Nature Neuroscience.

[70]  Huanan Zhang,et al.  Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings , 2015, Journal of neural engineering.

[71]  Walter Lang,et al.  A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing , 2015, Sensors.

[72]  Maysam Ghovanloo,et al.  A Power-Efficient Switched-Capacitor Stimulating System for Electrical/Optical Deep Brain Stimulation , 2014, IEEE Journal of Solid-State Circuits.

[73]  Jan M. Rabaey,et al.  A Minimally Invasive 64-Channel Wireless μECoG Implant , 2015, IEEE Journal of Solid-State Circuits.

[74]  Yao Lu,et al.  Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior , 2014, Neuron.

[75]  Timothy Denison,et al.  A 32-channel modular bi-directional neural interface system with embedded DSP for closed-loop operation , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[76]  Yonggang Huang,et al.  A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. , 2014, Journal of neurophysiology.

[77]  Michael P. Flynn,et al.  A Fully Self-Contained Logarithmic Closed-Loop Deep Brain Stimulation SoC With Wireless Telemetry and Wireless Power Management , 2014, IEEE Journal of Solid-State Circuits.

[78]  Gian Nicola Angotzi,et al.  A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals , 2014, Scientific Reports.

[79]  Daniel Sánchez Morillo,et al.  Dry EEG Electrodes , 2014, Sensors.

[80]  Jan M. Rabaey,et al.  A 4.78mm2 fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation , 2014, VLSIC.

[81]  Mikhail A. Lebedev,et al.  Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys , 2014, Nature Methods.

[82]  Luca Citi,et al.  Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses , 2014, Science Translational Medicine.

[83]  Shun Bai,et al.  A Complete 256-Electrode Retinal Prosthesis Chip , 2014, IEEE Journal of Solid-State Circuits.

[84]  R. J. Vogelstein,et al.  Restoring the sense of touch with a prosthetic hand through a brain interface , 2013, Proceedings of the National Academy of Sciences.

[85]  L. Cohen,et al.  Brain–machine interface in chronic stroke rehabilitation: A controlled study , 2013, Annals of neurology.

[86]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[87]  Jan M. Rabaey,et al.  A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 µW Wireless Neural Sensor , 2013, IEEE Journal of Solid-State Circuits.

[88]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[89]  Vaibhav Karkare,et al.  A 75-µW, 16-Channel Neural Spike-Sorting Processor With Unsupervised Clustering , 2011, IEEE Journal of Solid-State Circuits.

[90]  Paras R. Patel,et al.  Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. , 2012, Nature materials.

[91]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[92]  Karl Deisseroth,et al.  Optetrode: a multichannel readout for optogenetic control in freely moving mice , 2011, Nature Neuroscience.

[93]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[94]  W. Paulus Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods , 2011, Neuropsychological rehabilitation.

[95]  Brian Otis,et al.  A Low-Power ECoG/EEG Processing IC With Integrated Multiband Energy Extractor , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[96]  Refet Firat Yazicioglu,et al.  A 160μW 8-channel active electrode system for EEG monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[97]  Vaibhav Karkare,et al.  A 130-$\mu$ W, 64-Channel Neural Spike-Sorting DSP Chip , 2011, IEEE Journal of Solid-State Circuits.

[98]  Pedram Mohseni,et al.  A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface , 2011, IEEE Journal of Solid-State Circuits.

[99]  Giuliano Iurilli,et al.  Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. , 2011, Biomaterials.

[100]  T. Stieglitz,et al.  A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. , 2010, Biosensors & bioelectronics.

[101]  Anantha Chandrakasan,et al.  An energy-efficient biomedical signal processing platform , 2010, 2010 Proceedings of ESSCIRC.

[102]  Brice Rebsamen,et al.  A brain controlled wheelchair to navigate in familiar environments. , 2010, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[103]  Brendan Z. Allison,et al.  The Hybrid BCI , 2010, Frontiers in Neuroscience.

[104]  Maurits Ortmanns,et al.  An Active Approach for Charge Balancing in Functional Electrical Stimulation , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[105]  Zhi Yang,et al.  A biomedical multiprocessor SoC for closed-loop neuroprosthetic applications , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[106]  Mohammad Reza Abidian,et al.  Multifunctional Nanobiomaterials for Neural Interfaces , 2009 .

[107]  Jose M. Carmena,et al.  A System for Neural Recording and Closed-Loop Intracortical Microstimulation in Awake Rodents , 2009, IEEE Transactions on Biomedical Engineering.

[108]  Reid R. Harrison,et al.  The Design of Integrated Circuits to Observe Brain Activity , 2008, Proceedings of the IEEE.

[109]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[110]  M. Hallett Transcranial Magnetic Stimulation: A Primer , 2007, Neuron.

[111]  Valer Jurcak,et al.  10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems , 2007, NeuroImage.

[112]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[113]  V. Brown,et al.  Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects , 2005, Neuroscience & Biobehavioral Reviews.

[114]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[115]  Jonathan R Wolpaw,et al.  Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Daryl R. Kipke,et al.  Wireless implantable microsystems: high-density electronic interfaces to the nervous system , 2004, Proceedings of the IEEE.

[117]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[118]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[119]  T. Cameron,et al.  Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. , 2004, Journal of neurosurgery.

[120]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[121]  K. Horch,et al.  Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode , 2003, Journal of Neuroscience Methods.

[122]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Reid R. Harrison,et al.  A low-power, low-noise CMOS amplifier for neural recording applications , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[124]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[125]  Nicholas G. Hatsopoulos,et al.  Brain-machine interface: Instant neural control of a movement signal , 2002, Nature.

[126]  S. Meagher Instant neural control of a movement signal , 2002 .

[127]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[128]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[129]  K. Najafi,et al.  A micromachined silicon sieve electrode for nerve regeneration applications , 1994, IEEE Transactions on Biomedical Engineering.

[130]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[131]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[132]  H. S. Davis,et al.  A Controlled Study , 1966 .

[133]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[134]  G. Marmont Studies on the axon membrane; a new method. , 1949, Journal of cellular and comparative physiology.

[135]  A. Hodgkin Evidence for electrical transmission in nerve , 1937, The Journal of physiology.