On a class of preconditioned iterative methods on parallel computers.
暂无分享,去创建一个
[1] W. Niethammer. Relaxation bei komplexen matrizen , 1964 .
[2] R. P. Kendall,et al. An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations , 1968 .
[3] Bruce M. Irons,et al. A frontal solution program for finite element analysis , 1970 .
[4] O. Axelsson. A generalized SSOR method , 1972 .
[5] Niel K. Madsen,et al. Matrix Multiplication by Diagonals on a Vector/Parallel Processor , 1976, Inf. Process. Lett..
[6] T. Hughes,et al. Element-by-Element Implicit Algorithms for Heat Conduction , 1983 .
[7] Joel H. Saltz,et al. Reduction of the effects of the communication delays in scientific algorithms on message passing MIMD architectures , 1985, PPSC.
[8] Beresford N. Parlett,et al. Element Preconditioning Using Splitting Techniques , 1985 .
[9] I. Gustafsson,et al. A preconditioning technique based on element matrix factorizations , 1986 .
[10] G. Carey,et al. Element‐by‐element linear and nonlinear solution schemes , 1986 .
[11] Graham F. Carey,et al. A parallel element‐by‐element solution scheme , 1988 .
[12] J. M. Ortega. Efficient Implementations of Certain Iterative Methods , 1988 .
[13] Owe Axelsson. On Iterative Solution of Elliptic Difference Equations on a Mesh-Connected Array of Processors , 1989, Int. J. High Speed Comput..
[14] O. Axelsson,et al. Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.