Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle.

[1]  Jonathan E. Shoag,et al.  PGC-1 coactivators regulate MITF and the tanning response. , 2013, Molecular cell.

[2]  B. Spiegelman,et al.  A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle Hypertrophy , 2012, Cell.

[3]  P. Schrauwen,et al.  Muscle mitochondria and insulin resistance: a human perspective , 2012, Trends in Endocrinology & Metabolism.

[4]  P. Rustin,et al.  PGC-1α is Dispensable for Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle , 2012, PloS one.

[5]  B. Spiegelman,et al.  Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. , 2012, Cell metabolism.

[6]  S. Karumanchi,et al.  Cisplatin Nephrotoxicity Involves Mitochondrial Injury with Impaired Tubular Mitochondrial Enzyme Activity , 2012, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[7]  M. Roden,et al.  The role of mitochondria in insulin resistance and type 2 diabetes mellitus , 2012, Nature Reviews Endocrinology.

[8]  T. Gettys,et al.  NT-PGC-1α Protein Is Sufficient to Link β3-Adrenergic Receptor Activation to Transcriptional and Physiological Components of Adaptive Thermogenesis* , 2012, The Journal of Biological Chemistry.

[9]  Carlo Reggiani,et al.  Fiber types in mammalian skeletal muscles. , 2011, Physiological reviews.

[10]  Cholsoon Jang,et al.  PGC-1β regulates angiogenesis in skeletal muscle. , 2011, American journal of physiology. Endocrinology and metabolism.

[11]  B. Spiegelman,et al.  PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. , 2011, Cell metabolism.

[12]  C. Zechner,et al.  Response to Handschin and Spiegelman , 2011 .

[13]  C. Zechner,et al.  Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. , 2010, Cell metabolism.

[14]  A. Jiang,et al.  PGC-1 Coactivators in Cardiac Development and Disease , 2010, Circulation research.

[15]  T. Gettys,et al.  Regulation of NT-PGC-1α Subcellular Localization and Function by Protein Kinase A-dependent Modulation of Nuclear Export by CRM1* , 2010, The Journal of Biological Chemistry.

[16]  M. L. Genova,et al.  Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. , 2010, Antioxidants & redox signaling.

[17]  Zhen Yan,et al.  PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. , 2010, American journal of physiology. Cell physiology.

[18]  J. Klein,et al.  Alternative mRNA Splicing Produces a Novel Biologically Active Short Isoform of PGC-1α* , 2009, The Journal of Biological Chemistry.

[19]  R. Evans,et al.  AMPK and PPARδ Agonists Are Exercise Mimetics , 2008, Cell.

[20]  Maria M. Mihaylova,et al.  AMPK and PPARδ Agonists Are Exercise Mimetics , 2008, Cell.

[21]  C. Zechner,et al.  Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. , 2008, Genes & development.

[22]  Z. Arany High‐Throughput Quantitative Real‐Time PCR , 2008, Current protocols in human genetics.

[23]  D. Kelly,et al.  The PPAR trio: regulators of myocardial energy metabolism in health and disease. , 2008, Journal of molecular and cellular cardiology.

[24]  Jiandie D. Lin,et al.  Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. , 2008, Journal of applied physiology.

[25]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[26]  R. Scarpulla Transcriptional paradigms in mammalian mitochondrial biogenesis and function. , 2008, Physiological reviews.

[27]  B. Spiegelman,et al.  HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α , 2008, Nature.

[28]  V. Mootha,et al.  Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk , 2007 .

[29]  B. Spiegelman,et al.  Skeletal Muscle Fiber-type Switching, Exercise Intolerance, and Myopathy in PGC-1α Muscle-specific Knock-out Animals* , 2007, Journal of Biological Chemistry.

[30]  Jiandie D. Lin,et al.  Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism , 2007, Nature.

[31]  B. Spiegelman,et al.  PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy , 2007 .

[32]  R. Evans,et al.  PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis , 2007, Proceedings of the National Academy of Sciences.

[33]  P. Bénit,et al.  Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[34]  D. Kelly,et al.  PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. , 2006, The Journal of clinical investigation.

[35]  N. Fujii,et al.  AMP-activated Protein Kinase α2 Activity Is Not Essential for Contraction- and Hyperosmolarity-induced Glucose Transport in Skeletal Muscle* , 2005, Journal of Biological Chemistry.

[36]  D. Wallace A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine , 2005, Annual review of genetics.

[37]  Michael Courtois,et al.  PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis , 2005, PLoS Biology.

[38]  A. Nordheim,et al.  Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Zhen Yan,et al.  Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle. , 2004, American journal of physiology. Cell physiology.

[40]  Jiandie D. Lin,et al.  Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice , 2004, Cell.

[41]  Jiandie D. Lin,et al.  Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor γ Coactivators 1α and 1β (PGC-1α and PGC-1β) in Muscle Cells* , 2003, Journal of Biological Chemistry.

[42]  B. Salin,et al.  Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? , 2002, Biochimica et biophysica acta.

[43]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres , 2002, Nature.

[44]  T. Casoli,et al.  Mapping of Mitochondrial Metabolic Competence by Cytochrome Oxidase and Succinic Dehydrogenase Cytochemistry , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[45]  S. Seneca,et al.  A new mitochondrial point mutation in the transfer RNA(Leu) gene in a patient with a clinical phenotype resembling Kearns-Sayre syndrome. , 2001, Archives of neurology.

[46]  N. Fujii,et al.  Activation of AMP-Activated Protein Kinase as a Unifying Coupling Mechanism , 2000 .

[47]  Rick B. Vega,et al.  The Coactivator PGC-1 Cooperates with Peroxisome Proliferator-Activated Receptor α in Transcriptional Control of Nuclear Genes Encoding Mitochondrial Fatty Acid Oxidation Enzymes , 2000, Molecular and Cellular Biology.

[48]  Tatsuya Hayashi,et al.  Evidence for 5′AMP-Activated Protein Kinase Mediation of the Effect of Muscle Contraction on Glucose Transport , 1998, Diabetes.

[49]  P. Silver,et al.  MyoD is required for myogenic stem cell function in adult skeletal muscle. , 1996, Genes & development.

[50]  T. Bourgeron,et al.  Biochemical and molecular investigations in respiratory chain deficiencies. , 1994, Clinica chimica acta; international journal of clinical chemistry.

[51]  H. Blau,et al.  Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy , 1994, The Journal of cell biology.

[52]  C. Baste,et al.  Histochemical localization of cytochrome oxidase in gastric mucosa. , 1975, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[53]  A. Seligman,et al.  The ultrastructural localization of cytochrome oxidase via cytochrome. , 1975, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[54]  Jacob S. Hanker,et al.  NONDROPLET ULTRASTRUCTURAL DEMONSTRATION OF CYTOCHROME OXIDASE ACTIVITY WITH A POLYMERIZING OSMIOPHILIC REAGENT, DIAMINOBENZIDINE (DAB) , 1968, The Journal of cell biology.

[55]  P. Hanson,et al.  Explorer Mitochondrial changes within axons in multiple sclerosis , 2016 .

[56]  V. Petruzzella,et al.  The oxidative phosphorylation system in mammalian mitochondria. , 2012, Advances in experimental medicine and biology.

[57]  V. Mootha,et al.  Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. , 2007, The Journal of clinical investigation.

[58]  B. Spiegelman,et al.  The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. , 2007, Cell metabolism.

[59]  B. Spiegelman,et al.  PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. , 2007, Genes & development.

[60]  Jiandie D. Lin,et al.  Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. , 2003, The Journal of biological chemistry.

[61]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. , 2002, Nature.